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Abstract

For converting a decision table to a near-optimal deci-
sion tree in the sense of the minimal number of nodes
of the tree, we propose three criteria for variable selec-
tion: $\Gamma_{A},$ $\Gamma_{H}$ and $\Gamma_{D}$ from three different standpoints
of combinatorial, entropy and discriminant analyses.
First we examine “static“ behaviors of the criteria,
e.g. rejection of nonessential variables (nev-free), se-
lection of a totally essential variable (tev-bound) and
selection of a quasi-decisive variable (qdv-bound). It
is shown that $\Gamma_{A}$ is nev-free, tev-bound but not $qdv-$

bound, while $\Gamma_{H}$ and $\Gamma_{D}$ have the complemental prop-
erties. An experiment to evaluate the performance of
the criteria shows that each of the criteria gives good
near-optimum trees, indicating that $\Gamma_{D}$ and $\Gamma_{H}$ are
practically comparative and $\Gamma_{A}$ is slightly better. All
the criteria require at most $O(L^{2}2^{L})$ operations with
$O(L2^{L})$ storage, where $L$ is the number of variables of
the input table.

1. Introduction
A decision table is a list of “rules“. A rule consists of a
pair of “logical conditions“ and an “action” which spec-
ifies the action to be executed when the conditions are
satisfied. Taking Boolean values for both conditions
and actions, it represents a Boolean function; taking
feature vectors for conditions and object names for ac-
tions, it gives a description of a pattern. The occur-
rence of a decision table is rather wide. Identffication
of a specimen in biological science is a practical exam-
ple of decision table. If we count its use as a conceptual
tool, then it appearance is even wider. For example,
a typical situation in knowledge engineering or even
a program, e.g. so called Janov scheme, can also be
schematized in decision table terms. An important fea-
ture of a decision table is that it specffies only a very
restricted part of logical possibilities and leaves the re-

maining part as “don’t cares” or unconcerned (in other
words most decision tables specify part\’ial functions).

In a typical use of a decision table to identify an
unknown “input object”, one tests each single property
in sequence until the object is determined uniquely.
This procedure is called a sequential test procedure and
is conveniently represented by a decision tree $[ReS67]$ .
In most practical cases a decision may be made by
testing only some of the properties. In addition there
are fairly large tables (e.g. having dozens number of
properties) which are unable to be manually converted
into efficient trees. Thus an automatic conversion of a
table into an optimum or near-optimum tree is most
desirable [MTG81] and the central problem being to
determine the order of testing of the properties.

It is known that the construction problems of vari-
ous optimum decision trees are NP-complete $[HyR76$ ,
Mor82] when a given input table is not in ”expanded”
form (most frequent in practice as we mentioned be-
fore). Several heuristics of constructing near-optimum
trees have been proposed; mostly for treating the don’t
care entries (cf. [Ver72]). Given an L-variable ta-
ble, one can construct an optimum, i.e. a minimum-
cost tree by applying a dynamic programuning tech-
nique which always requires $O(L3^{L})$ operations (com-
parisons) with $O(3^{L})$ storage [Bay73, $ScS76$]. On the
other hand, a simple top-down heuristic method em-
ploying a successive variable selection, viz. VSM (vari-
able selection method) can construct a near-optimum
tree in far less operations if an efficient selection is guar-
anteed. Moreover, it has an advantage of applicability
to a most practical case of partial functions.

In this paper we adopt the number of internal nodes
of a tree as a cost of a tree (i.e. as an optimality cri-
terion) and propose three criteria for the VSM: $\Gamma_{A}$

from the combinatorial standpoint, $\Gamma_{H}$ from the en-
tropy standpoint and $\Gamma_{D}$ from the discriminant anal-
ysis standpoint. Naturally we want to determine their
performance comparing with optimal one and also the
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best heuristic among the three. Can we prove this by
some means? As a first approach we investigate their
behaviors in typical situations, namely we check rejec-
tion of nonessential variables (nev-free) and selection
of a totally essential variable or a quasi-decisive vari-
able (tev- or qdv-bound). Note that $nev$ is a worst
variable while $tev$ and $qdv$ are optimal ones. We show
that $\Gamma_{A}$ is nev-free and tev-bound but not qdv-bound,
while $\Gamma_{H}$ and $\Gamma_{D}$ have just the complement proper-
ties. Thus, as a next step, this leads us to conduct
an experiment research to compare the performance.
It shows that the criteria actually give near optimum
trees. Also the performance of $\Gamma_{D}$ and $\Gamma_{H}$ practically
coincides (1.05 in the average compared with optimum
one) and $\Gamma_{A}$ is slightly better (1.03 by the previous
measure). All the criteria require at most $O(L^{2}2^{L})$

operations (bit-comparisons or integer-additions) with
$O(L2^{L})$ storage (this is a polynomial bound if we take
$2^{L}$ size of an expanded table into account).

The construction of a tree having a minimum num-
ber of nodes has been received less attention to com-
pared with that of a tree having a minimum average
path lengths [Gar72, $MiS80$ , MTG81, Miy85]. How-
ever, the minimum cost is an invariance of the table,
representing the minimum number of “dividing” of the
table necessary to decompose it into constant tables; a
quantity inherently related to a complexity of the table
[Bud85, Lov85, Weg84]. This problem is also directly
related to the design of PLA (programmable logic ar-
ray) in which it is important to obtain complement of
a logical function in the form of as few product terms
as possible [Cha87, Sas85].

2. Definitions and Preliminaries
Let us denote $L$ properties simply by numbers
$\{1, \ldots, L\}$ . Let $\{a_{1}, \ldots, a_{K}\}$ be the set of $K$ actions.
Assume that each property $i$ takes, for simplicity, the
binary value $x_{j}=0$ or 1. We are given a map-
ping $f$ : $\{0,1\}^{L}arrow\{a_{1}, \ldots, a_{K}\}$ , called an $L- ary$-K-
action decision table, or simply a table, which maps
the values of the properties into the actions. Let $x=$

$(x_{1}\cdots x_{L})\in\{0,1\}^{L}$ . A pair $(x, f(x))$ is called a $nAle$ .
Often we denote a rule simply by a vector $z$ since it
uniquely determines a rule. We treat a table $f$ as the
set of all $2^{L}$ rules. In Table 1 we give an example of a
table in reduced form (a) and in expanded form (b).

2.1. Subtables and fixations
Given an initial table $f$ , a subtable is a restriction

$f(x_{1} . . . x_{i_{1}-1}s_{1}x_{i_{1}+1}\ldots x_{i_{h}-1}\ldots s_{h}x_{i_{h}+1}\ldots x_{L})$

$=$ $f|$ ( $x_{\dot{*}m}=s_{m}$ for $m=1,$ $\ldots,$
$h$ )

Table 1: A decision table: (a) reduced form, (b) ex-
panded form.

which is an $(L-h)$-ary function. The variables
$x_{i_{m}},$ $m=1,$ $\ldots h$

)
$’ 0\leq h\leq L$ are called fixed (to

$s_{m}$ ; $s_{m}=0$ or 1), and the remaining variables are free.
A subtable consists of all vectors some (say h) of their
elements equal fixed constants. The number $L-h$ of
free variables is the arity of the subtable. Sometimes it
is convenient to show it explicitly like $L-h$-subtable
(thus the initial table is an L-subtable while a rule is a
O-subtable). Since the initial table consists of $2^{L}$ rules,
we have $2^{2^{L}}$ different subsets, among them $3^{L}$ subsets
are subtables.

The sole type of restrictions $f|(x_{i_{m}}=s_{m}$ for $1\leq$

$m\leq h)$ we deal with is called a fixation of $f$ and de-
noted by $fi_{1^{1}}^{s}\cdots i_{h}^{s_{h}}$ or simply $f\alpha$ , where $\alpha$ denotes a
catenation $i_{1}^{s_{1}}\cdots i_{h^{h}}^{s}$ . The null fixation $\lambda$ corresponds
to the initial table $f$ . This notation conveniently repre-
sents the successive generation of subtables in the tree
by means of “dividing“ of a table, which is described
below.

2.2. Decision trees and Variable Selec-
tion Method (VSM)

A decision tree [Miy85] for $f$ is a binary tree associated
with each internal node two objects: a subtable and a
variable (called a test variable), and with each leaf a
decision action according to the following algorithm:

If $f$ is a constant (i.e. $f$ consists of a single action)
then the decision tree for $f$ is simply a single leaf with
the decision action. Otherwise it is a tree with a root
associated with the subtable $f$ and with any its free
variable $i$ as the test variable, having the left and right
subtrees corresponding to the subtables $fi^{0}$ and $fi^{1}$ ,
respectively (the edges leading to them are labeled by
$0$ and 1, respectively).

Thus every tree we deal with is an extended binary
tree [9, p.399], each node of it having exactly one in-
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Figure 1: Dividing a table $f$ by a variable $i$ . Figure 2: Example trees: (a) non-optimal. (b) optimal.

edge (except the root $R$ which has no in-edge) and
either zero or two out-edges. External nodes (leaves)
are those with no out-edges. The remaining nodes are
called intemal. We call a decision tree simply a tree.

One may think that each rule $x$ of a table $f$ is iden-
tified as belonging to $fi^{0}$ or $fi^{1}$ according to $x;=0$
or 1, respectively, at each internal node where the test
variable $i$ is located. A path of the tree represents suc-
cessive such fixations. Thus a tree can be considered
as a device to determine values of a given function by
means of successive fixations. We denote a tree by $T$ ,
or $T[f]$ when it is necessary to indicate the initial table.

Given a criterion to choose a test variable, one can
construct a tree by consistently selecting test variables
according to the criterion. This general algorithm
for constructing a tree is called a Variable Selection
Method (VSM). The basic operation of making L–l-
subtables $fi^{0}$ and $fi^{1}$ from $f$ is called (dividing’ of a
table (this corresponds to refining the action set in the
table).

A VSM ends in $O(2^{L})$ operations, since possible
number of such dividing of a table is at most $2^{L}-1$ .

2.3. Minimum decision trees
For an L-ary table $f$ , there can be at most $\prod_{:}^{L_{=1}}i^{2^{-1}}$

equivalent trees $[ScS76]$ . To construct “efficient” trees
we adopt the number of internal nodes of a tree $T$ as
a cost of a tree and denote it by $|T|$ . Since no test is
required at leaves, $|T|$ is the cost for representing the
whole test procedures of $T$ , assuming that the determi-
nation of the value of each property incurs a uniform
cost. We call a tree minimum (optimum) when its cost
is a minimum among all trees corresponding to the ta-
ble $f$ . In Fig.2 we indicate a tree and a minimum tree
for the table of Table 1.

2.4. Nonessential, totally essential and
quasi-decisive variables

Before going to variable selection criteria, we introduce
some notions concerning “good” variables. To do this
we need a notation to represent fixed and free vari-
ables of a subtable. Our discussion usually concerns
an arbitrarily fixed subtable $f$ and its direct subtables
$fi^{s}$ for $s=0,1$ . Let $f$ have all $h$ variables denoted
by 1, . .. , $h-1$ and $j(i\neq j, i=1, \ldots, h-1)$ . Let
$u=u(1)\ldots u(h-1),$ $u(i)=i,$ $i=1,$ $\ldots$ , $h-1$ denote a
sequence (i.e. catenation) of variables 1, . . . , $h-1$ . Let
$x=x(1)\ldots x(h-1),$ $x(i)=0$ or 1 for $i=1,$ $\ldots,$ $h-1$ ,
denote a bit sequence of length $h-1$ . Let us abbrevi-
ate a fixation $u(1)^{x(1)}\ldots u(h-1)^{x(h-1)}$ by $u^{x}$ for sim-
plicity. Now, let $u^{x}j$ represent a vector in which the
variables in $u$ are fixed to the values $x$ and a variable
$j$ is free. Finally, let us denote a l-subtable called a
j-parr by $f(u^{x}j)\equiv fu^{x}(u^{x}j)$ , which consists of a pair
of rules of $f:(u^{x}j^{0}, f(u^{x}j^{0}))$ and $(u^{x}j^{1}, f(u^{x}j^{1}))$ . If
two actions of a j-pair coincide, it is a constant j-pair,
otherwise it is a nonconstant j-pair. Each fixation $u^{x}$

which gives constant or nonconstant j-pair is called
inactive or active fixation for $j$ , respectively (hereafter
only $x$ is indicated instead of $u^{x}$ since $u$ is determined
as the (complement’ sequence of $j$ ).

Example 2.1. For $x=10$ and $u=23$ the fixation $u^{x}$

denotes $2^{1}3^{0}$ . Then l-pair $f(2^{1}3^{0}1)=f2^{1}3^{0}(2^{1}3^{0}1)$

in Table 2.1 is a constant l-pair, while $f(2^{0}3^{0}1)=$

$f2^{0}3^{0}(2^{0}3^{0}1)$ is a nonconstant l-pair. Hence the fix-
ation $2^{0}3^{0}$ is active while $2^{1}3^{0}$ is inactive.

A variable $i$ is nonessential in $f$ if each fixation $x$

for $i$ is inactive, i.e. $f(u^{x}i)=a_{j}$ for each $x$ (a con-
stant action $a_{j}$ depends on $x$ ). Also, a variable $i$ is
totally essential if each fixation $x$ for $i$ is active, i.e.
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$f(u^{x}i)\neq$ const. for each $x$ . When all variables are
nonessential then $f$ is a constant. Nonessential vari-
able and totally essential variable are abbreviated to
$nev$ and $tev$ , respectively. A minimum tree doesn’t
have nevs as test variables [15]. A $tevi$ is an opti-
mum variable [6], that is, the tree becomes minimum
if we choose $i$ as a test variable and make its left and
right subtrees minimum for $fi^{0}$ and $fi^{1}$ , respectively.
Note that there cpuld be a case that some of the rules
are never executed actually (e.g. they could be implied
by others in practical tables; this can be handled by as-
signing “probability” $0$ to them). Then even “essential
variables” need not be tested at all in the tree. So in
this case the notion of “essentiality” should be modi-
fied in an appropriate way. Throughout this paper we
assume that each rule is executable, i.e. the probability
of each rule is not $0$ .

There is another optimal variable. A variable $i$ is
decisive if $fi^{0}=a$ (cost.), $fi^{1}=b$ (const.) and $a\neq b$ .
A variable $i$ is quasi-decisive (abbreviated to $qdv$), if
$fi^{s}=$ const. and $fi^{i}\neq$ const. for strictly either one
of $s=0$ or 1 [14]. A $qdv$ is an optimal variable with
respect the cost defined in this paper (however, it is not
an optimal variable in general with respect to another
one (e-cost)) [14].

Therefore, it is desirable for a criterion to reject nevs
and select a $tev$ or a $qdv$ whenever they exist. Let us
call a criterion nev-free if it selects no nevs. Again, let
us call a criterion tev-bound or qdv-bound if it selects a
$tev$ or a $qdv$ whenever they exists.

In the next section we propose three VSM criteria
and examine above properties for them. This is impor-
tant for understanding the performance of the criteria,
since it is extremely difficult to show something for-
mally about the performance of this kind of heuristics.

3. Three criteria for variable se-
lection

We shall introduce three criteria for variable selection
to construct an efficient tree in the sense of minimal
number of internal nodes (i.e. dividing). Our basic
strategy is to “produce constant tables as fast as pos-
sible“, since no more dividing is necessary for constant
tables. To do this we introduce three measures of $(dis-$

tance” between a table and a constant from three dif-
ferent standpoints. Then our criteria simply select such
$i$ that the “distance” between $fi$“ and a constant func-
tion for both $s=0$ and 1 become a minimum among
all variables.

The first criterion $\Gamma_{A}$ is implicit in some literature
$[23,19]$ , approaching the problem from combinatorial
analysis. The second criterion $\Gamma_{H}$ is presented in

[7,13,17]. Also there are several literature in which the
notion of entropy is applied for the problem in other
context (mostly with the treatment of “don’t care“
symbols $(-$“

$)$ [6]. The entropy approach “views” the
occurrences of the actions as stochastic events. The
third criterion $\Gamma_{D}$ is new [13] and from the discrimi-
nant analysis standpoint [4], which is related to multi-
variate data analysis. In this framework, we use the
notion of ((

$mean$ value” of the variable $x$ ; with respect
to the action $a_{j}$ (denoted by $\mu_{j}^{\dot{*}}$ ) as well as the total
mean value (denoted by $\mu_{T}^{:}$ whose value is always 1/2
since we have the same number of rules having $x;=0$
and $x;=1$ ), treating the values $0$ and 1 as real num-
bers.

Before giving a detailed explanation of the criteria,
we give notations and equations. We denote by $N_{j}$ the
number of the occurrences of the action $a_{j}$ in $f$ , by $N_{j}^{i}$

the number of rules $(x, f(x))$ such that $f(x)=a_{j}$ and
$x_{i}=s$ for $s=0,1$ . Further, let class $(j)$ denote the set
of vectors corresponding to action $a_{j}$ . There hold the
following equations.

1) $N_{j}^{1^{O}}+N_{j}^{*^{1}}=N_{j}$ ,
2) $\sum_{j}N_{j}:=N^{i}=2^{L-1}=N/2,$ $s=0,1$ ,
$3) \sum_{i}jN_{j}=N=2^{L}$ ,
4) $p_{j}$ $:=N_{j^{1}}/N^{i}=2N_{j}^{i}/N,$ $s=0,1$ ,
5) $w_{j}$ $:=N_{j}/N,$ $\sum_{j}w_{j}=1$ ,
6) $\mu_{j}^{1}$ $:=E_{j}x:= \sum_{class(j)}x_{i}/N_{j}=N_{j}^{i^{1}}/N_{j}$ ,
7) $\mu_{T}^{:}$ $:=Ex;= \sum x_{i}/N=\sum_{j}N_{i}^{1^{1}}/N=1/2$ ;

$\mu_{T}^{i}=\sum_{j}w_{j}\mu_{j}^{i}$ .

Now we present the three criteria together with their
ranges for all tables.

Activity criterion $\Gamma_{A}$ . Define $A$; to be the number
of active i-pairs of $f$ . An active i-pair can be considered
as alogical unit to be separated by dividing a table (cf.
Fig 3). Then $A;= \sum_{:}^{n}A_{i}$ represents the total number
of i-pairs of $f$ . Since $A_{2}$ active i-pairs disappear by
dividing $f$ by $i$ , we select a variable $i$ which have a
maximum number of $A$; among all variables.

Lemma 3.1. The number of active i-pair $A$: ranges
$0\leq A;\leq 2^{L-1}$ . The best value $A_{i}=2^{L-1}$ is attained
if and only if $i$ is a totally essential variable of $f$, and
the worst value $A_{i}=0$ if and only if $i$ is a nonessential
variable of $f$ .

Proof. Obvious from the definition. $\square$

Entropy criterion $\Gamma_{H}$ . The actions $a_{j}$ in a ta-
ble $f$ can be considered to occur with the probabilities
$w_{j}=N_{j}/N,$ $j=1,$ $\ldots,$

$K$ . Therefore the nondetermi-
nacy (ambiguity) among them can be measured by the
entropy defined by

4



242

$H_{:}$ $:=-1/2 \sum_{s=0,1}\sum_{j=1}^{K}p_{j}^{:}\log p_{j}^{i}$ . (3)

Figure 3: Dividing by a variable 2 reduces 2 active
2-pairs.

$H(f)$ $:=- \sum_{j=1}^{K}w_{j}\log w_{j}$ . (1)

The ambiguity remaining after testing a variable $i$ may
be defined as the average ambiguity of the two fixations
$fi^{S}$ for $s=0$ and 1. The VSM procedure can be seen
as a process of perpetual increase of the determinacy
(equivalently, decrease of the ambiguity) of the tables
in each fixation until finally we get all tables completely
determined. Thus the amount of information obtained
by testing the variable $i$ may be defined by

$H(f)-H(f|i)=H(f)-(- \sum_{\epsilon=0,1}w(fi^{s})\sum_{j=1}^{K}p_{j}^{i}\log p_{j}^{i})$ ,

(2)
where $w(fi^{S});=p(fi^{s})/p(f)$ denote the conditional
probabilities $p(fi^{s}|f)$ of $f^{j}$ under $f,$ $p_{j}^{i}$ the conditional
probabilities that an action $a_{j}$ occurs under $x_{i}=s$ , i.e.
$p_{j}^{i}=p(a_{j}|fi^{s})$ for $s=0,1$ . Since the first term is a
constant for all variables of $f$ , only the second term is
sufficient. Also, in our case the probability of an action
is defined by the ratio of the number of rules having
the action to the number of whole rules. Hence we have
$w(fi^{S})=1/2$ for $s=0,1$ . Thus, we select a variable $i$

which has the least value of

Lemma 3.2. The entropy $H$; ranges $0\leq H_{i}\leq\log K$ .
The best value $H_{i}=0$ is attained if and only if either
$f$ is a constant or $i$ is a unique essential vanable of
$f$ , and the worst value $H;=\log K$ if and only if each
action $a_{j}$ occurs equiprobably for $j=1,$ $\ldots,$

$K$ in both
subtables $fi$ “ for $s=0$ and 1, $i.e$ . $p_{j}^{\dot{*}}=1/K$ for $j=$

$1,$ $\ldots K$
) and $s=0,1$ (equivalently, $N_{j^{i}}=N/(2K)$).

Proof. Put $H_{i}=(-1/2) \sum_{s=0,1}\sum_{j=1}^{K}p_{j}^{i}\log p_{j}^{1}$ $=$

$0$ . Since the function $-p\log p(0\leq p\leq 1)$ is a non-
negative convex function, $H;=0$ is attained in, and
only in, the following four cases: ($p_{j^{O}}^{1}=0$ or $p_{j^{o}}^{1}=1$ )

$a_{i}n_{o}d$
($p_{j^{1}}^{:}=0$ or $p_{j^{1}}^{1}=1$ ) for each $j$ . However, the case

$p_{j}=0$ and $p_{j^{1}}^{:}=0$ for all $j$ can be excluded, because
this means that no action appear in $f$ . Thus we have
$p_{j}^{:}=1$ for some $j_{s}$ for $s=0$ and 1, i.e. $fi‘=a_{j}$ . (a
constant) for $s=0$ and 1. Thus, if $a_{jo}=a_{j_{1}}$ then $f$ is
a constant, otherwise $i$ is a unique essential variable of
$f$ . It is well-known that the unique maximum value of
the entropy function (1) is attained iff the probabilities
of the actions are uniform, i.e. $w_{j}=1/K$ . In equation
(3) this should hold for both $s=0$ and 1 (to assure
this we assume that $2K$ divides $N$). $\square$

Note 3.3. Under given occurrences of actions:
$N_{1},$

$\ldots,$ $N_{K}( \sum_{j}N_{j}=N)$ , the maximum value $H_{i}=$

$-(1/N) \sum_{j}N_{j}\log N_{j}+\log N$ is attained if and only
if $i$ divides each $N_{j}$ into equal halves for all $j$ , i.e.
$N_{j}^{:^{o}}=N_{j}^{i^{1}}=N_{j}/2$ for 1 $\leq j\leq K$ (further when
$N_{j}=N/K$ we have the worst value of the lemma).

Discriminant criterion $\Gamma_{D}$ . In a decision ta-
ble each variable $x_{i}$ contributes to discriminate dif-
ferent actions. Hence one can measure “discriminat-
ing power” of a variable $x_{i}$ from the standpoint of the
discriminant analysis [4], which presents the following
ratio of variances as its measure:

$\eta_{i^{2}}$ $:=\sigma_{Bi}^{2}/\sigma_{Wi}^{2}$ (4)

where $\sigma_{Bi}^{2}$ and $\sigma_{Wi}^{2}$ represent the between-action (in-
terclass) and the within-action (intraclas$s$) variances of
the variable $x_{i}$ , respectively, and defined by

$\sigma_{Bi}^{2}$

$:= \sum_{j}w_{j}(\mu_{j}^{:}-\mu_{T}^{:})^{2}$
, ( $5\rangle$

$\sigma_{Wi}^{2}$

$:= \sum_{j}w_{j}\cdot(1/N_{j})\sum_{class(j)}(x_{i}-\mu_{j}^{1})$
.

5



243

To make the point of the theory clear, let us con-
sider an example that we have a single decisive vari-
able $i$ which separates actions $a$ and $b$ , i.e. $fi^{0}=a$

and $fi^{1}=b$ . The mean values of $x_{j}$ with respect to
the actions $a$ and $b$ is $\mu_{a}^{:}=0$ and $\mu_{b}^{i}=1$ , respec-
tively, discriminating the two actions precisely. If the
two actions occur in both subtables, the values $\mu_{a}^{1}$ and
$\mu_{b}^{i}$ are settled somewhere between $0$ and 1, reflecting
the mixed occurrences of the actions. Again, if the
occurrences of the two actions are completely random
($x_{i}=0$ and $x_{i}=1$ occur the same number for both
$a$ and $b$ ), we have $\mu_{a}^{i}=\mu_{b}^{i}=1/2$ . This example il-
lustrates that “mean values” are useful for measuring
(discriminating ability” of a variable. One may won-
der that the values $0$ and 1 assumed by a variable are
(nominal’ entities only to be used to distinguish two
different things. However, as is shown in the follow-
ing Note 3.2 we can use $0$ and 1 in place of any two
different real numbers.

Table 2: Values of the measures for the function.

Note 3.4. The $\eta^{2}$ so defined by a ratio of two vari-
ances is invariant under an affine transformation of co-
ordinate $x$ to $y=b(x+a)$ , i.e. shift $a$ and scale factor
$b$ ; in other words from $x=0,1$ to $y=ab,$ $b(1+a)$ .

$\overline{x})^{2}=1/4=con^{1}stSince\sigma_{Bi}^{2}+\sigma_{W}^{2}=\sigma_{\tau:}^{2}an_{\frac{d}{x}}\sigma_{Ti}=_{2^{1/}N^{N\sum_{=}(x_{i}-}}(since=^{2}1/,x_{2}S_{))}^{I}the$

greater $\sigma_{B}^{2}$ , the greater $\eta_{i}$ , and the $i$ which gives a
maximum $\eta$; also gives a maximum value for $\sigma_{Bi}^{2}$ . Thus
the interclass variance $\sigma_{B_{i}}^{2}$ alone represents the degree
of separation of the classes. Hence we can take $\sigma_{Bi}^{2}$ as
a selection criterion. Using $\sum w_{j}=1$ , finally we have:

Since $\sigma_{Bi}^{2}=\sum w_{j}(\mu_{j}^{i}-1/2)^{2}\leq\sum w_{j}\cdot 1/4=1/4$ and
this is attained if and only if $\mu_{j}^{i}=0$ or 1 for all $j$ . From
$\sigma_{Bi}^{2}=\sum_{j}w_{j}(\mu_{j}^{i}-\mu_{T}^{i})^{2}=0$ we have $\mu_{j}^{i}=\mu_{T}^{i}=1/2$

for all $j$ . $\square$

We note that the same situation that $i$ divides each
action class into two halves gives the worst values for
both $H_{i}$ and $\sigma_{Bi}^{2}$ (cf. Note 3.4). Also note that there
are some relevance between situations that give best
values for the two criteria.

$\sigma_{Bi}^{2}$ $=$
$\sum_{j}w_{j}(\mu_{j}^{:})^{2}-(\mu_{T}^{:})^{2}$

(6)

$=$
$\sum_{j}w_{j}(\mu_{j}^{i})^{2}-1/4$

(7)

$=$
$(1/N) \sum_{j}(N_{j}:1)^{2}/N_{j}-1/4$ (8)

(thus actually it suffices to calculate the first term).

Lemma 3.5. The between-action variance $\sigma_{Bi}^{2}$ ranges
$0\leq\sigma_{Bi}^{2}\leq 1/4$ . The best value $\sigma_{Bi}^{2}=1/4$ is attained
if and only if $i$ divides the action set into two disjoint
sets, $i.e$ . the actions of $fi^{0}$ and $fi^{1}$ have no action in
common, and the worst value $\sigma_{Bi}^{2}=0$ if and only if $i$

divides each action class into two halves, $i.e$ . $N_{j}^{i^{O}}=$

$N_{i}^{i^{1}}=N_{j}/_{K}2.(equivalently, \mu_{j}^{\dot{*}}=1/2)$ for each class $j$ ,
$\gamma=1,$

$\ldots$ ,

Proof. Since $0\leq\mu_{j}^{1}\leq 1$ , we have $0\leq(\mu_{j}^{i}-1/2)^{2}\leq 1/4$

and the maximum is attained if and only if $\mu_{j}^{:}=0$ or 1.

Example 3.6. In Table 2 we give the values of the
above measures for the table given in Table 1. All the
criteria select the variables 1 or 3 as a first test variable
and can give the minimum tree indicated in Fig. 2.

4. Properties of the criteria

4.1. Judgement of constant tables
Since we compute values of the criterion for each vari-
able $i$ , it is efficient if we can decide whether we need
further dividing of the table or not solely from the val-
ues of the criterion for all variables of the table. The
most basic such recognition is whether the table is a
constant or not. We present the conditions of constant
tables for the three criteria.

Lemma 4.1. $A;=0$ for all $i$ if and only if $f$ is a
constant.

6
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Proof. Assume $fu^{x}i=a$ . Since $A;=0$ for all $i$ , com-
plementing a single value $x(j)$ keeps the action invari-
ant, because otherwise we have $A_{j}>0$ . Thus $fu^{x}i=a$

for any $x$ . Hence $f$ is a con$s$tant. $\square$

Lemma 4.2. If $i$ is a unique essential vanable of $f$

then $H_{l}>0$ for any $l\neq i$ .

Proof. Since $fl^{0}=fl^{1}\neq$ const, $p_{j^{o}}^{l}\neq 0$ and $p_{j^{0}}^{l}\neq 1$

for some $j$ . Hence $H_{1}>0$ from (3). $\square$

Lemma 4.3. If $f$ is a constant then $\sigma_{Bi}^{2}=0$ for all $i$ .
The converse is not true.

Proof. Assume $f=a_{j}$ . Then $\mu_{j}^{:}=\mu_{T}^{:}=1/2$ for all
$i$ . Thus from Lemma 3.5 we have the assertion. It is
easy to see that there is a function $f\neq cost$ . satisfying
$\sigma_{Bi}^{2}=0$ for all $i$ (cf. Example 4.1 below). $\square$

Theorem 4.4. The necessary and sufficient condi-
tions for the constant judgement of the criteria $\Gamma_{A}$

;

$\Gamma_{H}$ are $A_{i}=0,$ $H_{i}=0$ for each $i$ , while that for $\Gamma_{D}$ is
that there exists a unique vanable $j$ such that $w_{j}=1$ .

Proof The proofs for $\Gamma_{A}$ and $\Gamma_{H}$ are due to Lemma 4.1
and Lemma 3.2 and 4.2, respectively. The condition for
$\Gamma_{D}$ is trivial. $\square$

Note 4.5. On the basis of Theorem 4.4 a practical
procedure for constant recognition can be given by us-
ing $A_{i}$ or $H_{i}$ . If $\max_{i}A_{i}=0$ then $f$ is a constant.
Suppose $\min H;=0$ . If there is a $l$ such that $H_{l}>0$ ,
then $i$ is a unique essential variable of $f$ . Otherwise $f$

is a constant.

4.2. Rejection of nonessential variables
(nev-free property)

We show that the criterion $\Gamma_{A}$ do not select a nonessen-
tial variable, while $\Gamma_{H}$ and $Gamma_{D}$ may do so. This
is done by indicating that extremum values of the
criteria $\Gamma_{H}$ and $Gamma_{D}$ can not be given only by
nonessential variables.

Lemma 4.6. The disc ‘minant criteri on takes a $\min-$

imum (worst) value $\sigma_{Bi}^{2}=0$ if $i$ is a nonessential van-
able. The converse is not $tr\eta te$ .

Proof. Put $H_{*}$. $:=$ $\sum_{j}h_{j}^{i}$ , where $h_{j}$ $:=-(1/2)$
$(p_{j^{o}}^{i}\log p_{j^{o}}^{:}+p_{j^{1}}^{i}\log p_{j^{1}}^{:})$ . Since $p_{j^{O}}^{i}+p_{j^{1}}^{i}=2(N_{j}:^{o}+$

$N_{j}^{i^{1}})/N=2N_{j}/N=2w_{j}$ does not depend on $i$ . We
can consider $h_{j}^{i}$ as a function of $p_{j^{o}}^{1},$ $0\leq p_{j^{o}}^{:}\leq 2w_{j}$ .
Then the function $h_{j}^{i}(p_{j^{o}}^{2})$ is non-negative and has value
$0$ at both boundaries, i.e. $h_{j}^{\dot{*}}(0)=h_{j}:(2w_{j})=0$ . Fur-
ther, it is $u_{P^{ward}}$ convex and symmetric with respect
to $p_{j^{o}}^{i}=p_{j}^{i}$ $=w_{j}$ . Hence it has a unique maximum
when $p_{j^{O}}^{i}=p_{j^{1}}^{i}$ . Thus $H_{i}$ takes a maximum value if
and only if $p_{j^{o}}^{i}=p_{j^{1}}^{i}$ for all $j$ . $\square$

Now we show that both converses of Lemma 4.6 and
4.7 are not true by examples. The reason for this is
that $N_{j}^{1^{0}}=N_{j}^{i^{1}}=N_{j}/2$ for all $j$ does not imply $i$

to be nonessential. Indeed, in the examples below all
the variables (either essential or nonessential) give re-
$spective\cdot tie$ values with respect to the both criteria $H$;
and $\sigma_{Bi}^{2}$ . Thus, we are not sure that we do not select
a worst variable (nonessential variable is a worst vari-
able) so far as we are selecting a variable solely on the
basis of the values of the criterion. The criterion $\Gamma_{A}$

does not have this disadvantage. The unwelcome effect
of this $nev$ selection on the cost of the resulting trees
is also discussed in [15].

We give 4-ary functions $f$ in the following two ex-
amples (only 3-ary functions $f1^{0}$ are indicated since
we set variable 1 (only) nonessential).

Example 4.8.

$f1^{1}$ $:=f1^{0},$ $f1^{0}(101)=f1^{0}(010)$ $:=b$ ,
$f1^{0}(x_{2}x_{3}x_{4})=a$ for other $x_{2}x_{3}x_{4}$ .

We have $A_{I}=0,$ $A_{\dot{*}}=2$ for $i=2,3,4$ . Also we have
$N_{a}^{i}=6$ and $N_{b}:=2$ for $i=1,2,3,4$ and $s=0,1$ .
Thus $\mu_{j}^{\dot{*}}=1/2$ for all $i$ and $j$ , leading to $\sigma_{Bi}^{2}=0$ for
all $i$ . Further, $p_{a}^{1}=3/4$ and $p_{b}^{i}=1/4$ for $s=0,1$ and
$i=1,2,3,4$ . Thus $H;=-(3/4\log 3/4+1/4\log 1/4)$
$=0.811$ for all $i$ .

Example 4.9. The following $f1^{0}$ is a “parity” func-
tion.

$f1^{1}:=f1^{0}$ ,

$f1^{0}(x_{2}x_{3}x_{4})=\{ba$ $othe^{2}rwiseifx+x_{3}.+x_{4}=0$
$(mod 2)$ ,

Proof. Assume that $i$ is nonessential. Then we have
the same number of $x_{i}=0$ and $x;=1$ for each action
$a_{j}$ . Then obviously $N_{j}:^{o}=N_{j}^{i^{1}}=N_{j}/2$ . Hence from
Lemma 3.5 we have the first assertion. $\square$

Lemma 4.7. The entropy $H_{i}$ takes a maximum
(worst) value if $i$ is a nonessential vanable. The con-
verse is not true.

We have $A_{1}=0,$ $A_{i}=4$ for $i=2,3,4$ . Also we have
$\sigma_{Bi}^{2}=0$ and $H_{i}=1$ for all $i$ .

Thus in these cases $\Gamma_{D}$ and $\Gamma_{H}$ may select $nev$

$1$ while $\Gamma_{A}$ does not. Note that this crucial nev-
selection occurs only when $\sigma_{Bi}^{2}=0$ (a tie value) and
$H_{i}=H_{\max}$ $:=(1/N) \sum_{j}N_{i}\log N_{i}+\log N$ (a tie value)
for all $i$ (cf. Note 3.3 and Lemma 4.7), since as far as
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there exists $i$ such that $\sigma_{Bi}^{2}\neq 0$ or $H_{i}\neq H_{\max}no$ nev-
selection occurs.

Hence we have:

Theorem 4.10. Only the criterion $\Gamma_{A}$ is nev-free,
while the other criterza $\Gamma_{H}$ and $\Gamma_{D}$ may select a
nonessential variable.

The next example indicates that $\Gamma_{H}$ and $\Gamma_{D}$ do not
give even unique values to totally essential variables.

Example 4.13.

4.3. Selection of a totally essential vari-
able (tev-bound property)

Any $tev$ is an optimal variable. So it is desirable for a
criterion to select a $tev$ whenever it exists. We show
that this is true for $\Gamma_{A}$ but not true for $\Gamma_{D}$ and $\Gamma_{H}$ .
As we will see below, not only all tevs do not give ex-
tremum values but non-tevs also can give extremum
values with respect to the both criteria $\Gamma_{D}$ and $\Gamma_{H}$ .
Thus in a sense, they are not sensitive to total essen-
tiality of a variable.

We have the following values of the criteria for each
variable.

Theorem 4.11. The criterion $\Gamma_{A}$ is tev-bound, while
$\Gamma_{H}$ and $\Gamma_{D}$ are not.

Proof. This is derived from Lemma 3.1 and the exam-
ple given below. $\square$

In the following example all the variables (either to-
tally essential or not) give tie values with respect to the
both criteria $\Gamma_{D}$ and $\Gamma_{H}$ . Thus, we are not sure that
we do select an optimal variable as far as we obey the
criteria $\Gamma_{D}$ or $\Gamma_{H}$ . Indeed, they may select a non-tev
1 which is not optimal. On the contrary the criterion
$\Gamma_{A}$ does not have this disadvantage.

Example 4.12.

In fact we have $H_{2}>H_{3}>H_{4}$ and $\sigma_{B_{2}}^{2}<\sigma_{B_{3}}^{2}<\sigma_{B_{4}}^{2}$

and the variable 3 is not $tev$ while the variables 2 and
4 are tevs. The criteria $\Gamma_{D}$ and $\Gamma_{H}$ select variable 4
(one of the optimal variables), while $\Gamma_{A}$ may select any
of tevs 1, 2 and 4.

4.4. Selection of a quasi-decisive vari-
able (qdv-bound property)

Lastly we will show that the criteria $\Gamma_{D}$ and $\Gamma_{H}$ are
qdv-bound while $\Gamma_{A}$ is not, i.e. $\Gamma_{A}$ may select a non-
qdv even if there are $qdvs$ among the variables of $f$ .
To show the qdv-bound property we mu$st$ show that
$qdvs$ give an extremum (maximum or minimum) value
of the criterion and, conversely, if there are $qdvs$ , only
they (any of them) give an extremum value.

First we need a notation for treating a table having
qdvs which is used throughout this section. Assume
that $i$ is a O-side-qdv $(fi^{0}=a_{1})$ , then $f$ can be repre-
sented as follows:

We have the following values of the criteria for each
variable.

8
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So the condition that the variable $i$ is a O-side-qdv is:

$N_{1}^{i^{O}}$

$=$ $M$ ,
$N_{j}^{1^{O}}$ $=$ $0$ for $j=2,$ $\ldots,$

$K$ ,
$N_{1}^{\dot{\iota}^{1}}$ $=$ $N_{1}-M$ ,
$N_{j}^{:^{1}}$ $=$ $N_{j}$ for $j=2,$ $\ldots,$

$K$ ,

where $M:=N/2=2^{L-1}(K\geq 2)$ .
Let $k$ be any variable of $f(k\neq i)$ . Put

$m_{j}$
$:=N_{j}^{k^{O}},$

$n_{j}$
$:=N_{j}^{k^{1}}$

$(m_{j}+n_{j}=N_{j}, \sum_{j}m_{j}=\sum_{j}n_{j}=M)$
, (9)

$j=1,$ $\ldots,$
$K$ .

Now we have a lemma.

Lemma 4.14. The vanable $k$ is also a $qdv$ in $f$ if
and only if we have either $m_{j}=0(2\leq j\leq K)$ or
$n_{j}=0(2\leq j\leq K)$ .

Proof. The necessity is easily seen from the condition
that $k$ is also a $qdv$ . Since then we can represent the
same table in the following form assuming that $k$ is
also decisive in O-side:

$qdvs$ . This is easy to check for $\Gamma_{A}$ and $\Gamma_{H)}$ since ac-
tivities are $A;= \sum_{j=2}^{K}N_{j}=A_{k}$ , and the entropy $H_{:}$

is determined by the occurrence frequencies of actions
in the two subtables $fi^{S}$ (independently from its rule
configurations). For discriminant criterion, this is not
obvious. However, we have $N_{1}^{i^{1}}=N_{1}^{k^{1}}=N_{1}-M$ ,
$N_{j}^{:^{1}}=N_{j}^{k^{1}}=N_{j}(2\leq j\leq K)$ when both $i$ and $k$ are
O-side-decisive or $N_{1}^{k^{1}}=M,$ $N_{j}^{k^{1}}=0(2\leq j\leq K)$

when $k$ is l-side-decisive. In both cases, $\sigma_{Bi}^{2}=\sigma_{B_{k}}^{2}=$

$(1/4)(N/N_{1}-1)$ . Actually, we prove a more stronger
result for each criterion in the sequel (i.e. every $qdv$

gives an extremum value with respect to each crite-
rion). We also prove that for activity criterion only a
maximum value is not strictly attained by qdvs. This
property makes the activity criterion not qdv-bound.

Lemma 4.15. If $i$ is a $qdv$ , then $A_{i}$ is a maximum.
Converse is not $trwe$ for $L>3,$ $i.e$ . a maximum $A_{i}$ is
given not strictly by qdvs assuming there are qdvs, $in$

other words, $i$ may not be a $qdv$ assuming that $A$ ; is a
maximum and there are qdvs in $f$ .

Proof. Assuming $fi^{0}=a_{1},$ $fi^{1}\neq$ const., we show
$A_{k}\leq A_{i}$ for any $k$ . Let $D$ denote the set of rules
having different actions from $a_{1}$ in $f^{i^{1}}$ (the comple-
ment $\overline{D}=fi^{1}\backslash D$ consists of rules having action
$a_{1})$ . Then the activity $A;=|D|= \sum_{j=2}^{K}N_{j}$ . Put
$s:=|D|$ for simplicity. For active k-pairs we are suffi-
cient to consider only $fi^{1}$ , since no active k-pai’r exists
in $fi^{0}$ . Assume that there are $t$ active k-pairs within
$D$ . Then the other possibility of active k-pair is be-
tween $D$ and $\overline{D}$ and the number of such k-pairs is at
most $s-2t$ . Hence total number of active k-pairs are at
most $A_{k}\leq s-2t+t=s-t\leq A_{i}$ . The equality holds if
and only if $t=0$ , which is satisfied if (but not only if)
the condition in Lemma 4.14 holds, i.e. $k$ is also a $qdv$ .
For the second assertion we give an example below. $\square$

In the following example we show that $A_{k}=A_{i}=s$

(a maximum among all variables) for a $qdvi$ and for a
non-qdv $k$ . Thus $\Gamma_{A}$ is not qdv-bound in this case.

Then obviously $m_{j}=0$ for $j=2,$ $\ldots k$
) The latter

alternative occurs when $k$ is l-side-quasi-decisive. This
is obtained by exchanging vectors of $x_{k}=0$ and $x_{k}=1$

in $fi^{1}$ so that the action $a_{1}$ covers $x_{k}=1$ . Conversely,
assume that $m_{j}=0$ for $j=2,$ $\ldots$ , $K$ . Then from (??)
we have $n_{j}$

$:=N_{j}^{k^{1}}=N_{j}$ for $j=2,$ $\ldots$ , $K,$ $N_{1}^{k^{O}}=M$

and $N_{1}^{k^{1}}=N_{1}-M$ . This means that $k$ is also a 0-
side-qdv. $\square$

We note that all the three criteria $\Gamma_{A},$ $\Gamma_{H}$ and
$Gamma_{D}$ give the same values, respectively, for all

Example 4.16. We represent a 4-ary function
$f(x_{1}x_{2}x_{3}x_{4})$ by giving $f1^{0}$ and $f1^{1}$ :

$f1^{0}$ $:=a$ , $f1^{1}(000)=b$ , $f1^{1}(011)=c$ ,
$f1^{1}(110)=d$ , $f1^{1}(x_{2}x_{3}x_{4})=a$ for other $x_{2}x_{3}x_{4}$ .

We have $A;=3$ for all $i=1,2,3,4$ ($t=0$ in all cases)
but only the variable 1 is $qdv$ .

We note that only for 2-ary tables $(L=2)$ the con-
verse of the lemma holds, i.e. the conditions $A_{1}=$

$A_{2}=a$ maximum and variable 1 is $qdv$ imply variable
2 also $qdv$ .

9
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Lemma 4.17. If $i$ is a $qdv$ then $H_{i}$ is a minimum.
Conversely, if there are qdvs, then only qdvs give a
minimum value of $H_{1}$ .

Proof. Let $fi^{0}=a_{1}$ and $k$ be any variable $(k\neq i)$ .
We show $H;\leq H_{k}$ and the equality holds (if and) only
if $k$ is also a $qdv$ . Denote the number of rules having
action $a_{1}$ and $x_{k}=0$ in $fi^{1}$ by $m_{1}’$ and similarly by $n_{1}’$

for $x_{k}=1$ . That is

$m1$ $;=$

$|$ { $(x,$ $f(x))$ having action $a_{1}$ and $x_{i}=1,$ $x_{k}=0$ } $|$ ,
$n_{1}’$ $;=$

$|$ { $(x,$ $f(x))$ having action $a_{1}$ and $x;=1,$ $x_{k}=1$ } $|$ .

Since rules of $fi^{0}$ consist exactly the same number
$(M/2)$ of vectors of $x_{k}=0$ and $x_{k}=1$ , we have (cf.
(9))

$m_{1}=M/2+m_{1}’,$ $n_{1}=M/2+n_{1}’(N_{1}-M=m_{1}’+n_{1}’)$ .
(10)

From $p_{j}^{i}=N_{j}^{i}/M$ we have for $i$ and $k$ :

$p^{i_{1^{O}}}=1,$ $p_{j^{o}}^{i}=0$ for $j=2,$ $\ldots$ , $K$ ,
$p_{1}^{i^{1}}=(N_{1}-M)/M,$ $p_{j^{1}}^{i}=N_{j}/M$ for $j=2,$ $\ldots$ , $K$ ,
$p_{j}^{k^{0}}=m_{j}/M$ for $j=1,$ $\ldots$ , $K$ ,
$p_{j}^{k^{1}}=n_{j}/M$ for $j=1,$ $\ldots,$

$K$ .

Substituting these into (3), we have (hereafter all the
summation is for $2\leq j\leq K$ unless explicitly stated in
other way):

$s$ $:=-N(H;-H_{k})=(N_{1}-M)\log(N_{1}-M)/M$

$+ \sum(N_{j}\log N_{j}/M)-\sum_{j=1}^{K}(m_{j}\log m_{j}/M$

$+n_{j}\log n_{j}/M)$

$=(N_{1}-M)\log(N_{1}-M)-(m_{1}\log m_{1}+n_{1}\log n_{1})$

$+M \log M+\sum(N_{j}\log N_{j}-m_{j}\log m_{j}-n_{j}\log n_{j})$ .

Again, substituting $m_{j}=N_{j}-n_{j},$ $j=1,$ $\ldots,$
$K$ , we

have

$s=(N_{1}-M)\log(N_{1}-M)$

$+M\log M-(N_{1}-n_{1})\log(N_{1}-n_{1})-n_{1}\log n_{1}$

$+ \sum((N_{j}-n_{j})\log N_{j}/(N_{j}-n_{j})+n_{j}\log N_{j}/n_{j})$ .

Putting $t(x)=(N_{1}-x)\log(N_{1}-x)+x1ogx$ ,

$s=t(M)-t(n_{1})$

$+ \sum((N_{j}-n_{j})\log N_{i}/(N_{j}-n_{j})+n_{j}\log N_{j}/n_{j})$ .

Figure 4: The function $t(x)=(N_{1}-x)\log(N_{1}-x)+$

$x\log x(0\leq x\leq N_{1})$ .

From $N_{j}\geq n$; the last term is non-negative $(\geq 0)$ .
We show that $k$ is a $qdv$ if and only if $t(M)\leq t(n_{1})$ .

The function $t(x),$ $0\leq x\leq N_{1}$ is a monotone symmet-
ric with respect to $x=N_{1}/2$ (cf. Fig. 4). Considering
$n_{1}\leq M,$ $N_{1}/2\leq M\leq N_{1}$ , we have

$n_{1}\leq N_{1}/2-(M-N_{1}/2)=N_{1}-M\Leftrightarrow t(M)\leq t(n_{1})$ .
(11)

Substituting (10) into (11), we conclude $t(M)$ $\leq$

$t(n_{1})\Leftrightarrow M/2\leq m_{1}’$ . Since there are another $M/2$

rules having action $a_{1}$ an$dx_{k}=0$ (among the rules of
$x_{i}=0)$ , this means that $k$ is also O-side-decisive, i.e.
$fk^{0}=a_{1}$ (a constant). Hence, if $k$ is not a $qdv$ , then
$s>0$ . Thus, whenever a $qdv$ exists, a $qdv$ is selected
(if there are many qdvs then any of them, because they
give a tie value), since we select a variable $i$ which gives
a minimal value of $H_{i}$ . $\square$

Lemma 4.18. If $i$ is a $qdv$ , then $i$ gives a maximum
value of $\sigma_{Bi}^{2}$ . Conversely, if there are qdvs then only
qdvs give a maximum value of $\sigma_{Bi}^{2}$ .
Proof. Instead $\sigma_{Bi}^{2}$ we can consider $B;= \sum_{j}w_{j}(\mu_{j}^{i})^{2}=$
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$(1/N) \sum_{j}(N_{j}^{i^{1}})^{2}/N_{j}$ . Putting $N_{j}’$ $:=N_{1}\cdots N_{j-1}$ .
$N_{i+1}\cdots N_{K}$ , we have $N \cdot N_{1}\cdots N_{K}\cdot B;=\sum_{j}N_{j}’(N_{j}^{i^{1}})^{2}$ .
Following the notation (10) for the variable $k$ , consider

$h$

$:=N \cdot N_{1}\cdots N_{K}(B_{i}-B_{k})=\sum_{j=1}N_{j}’((N_{j}^{i^{1}})^{2}-n_{j}^{2})$
.

Substituting $N\dot{i}^{1}=N_{1}-N/2$ and
$n_{1}=N/2- \sum^{(13)}n_{j}$

into (13), we have the following:

$h=N_{1}’(N_{1}-N/2)^{2}+ \sum N_{j}’N_{j}^{2}$

$-N_{1}’(N/2- \sum n_{j})^{2}-\sum N_{j}’n_{j}^{2}$

$=N_{1} \cdots N_{K}(\sum_{j=1}N_{j}-N)+N_{1}’(N^{2}/4)$

$-(N_{1}’(N^{2}/4-N \sum n_{j}+(\sum n_{j})^{2})-\sum N_{j}’n_{j}^{2}$

$=N_{1}’N \sum n_{j}-N_{1}’(\sum n_{j})^{2}-\sum N_{j}’n_{j}^{2}$ .

Again, substituting $N= \sum_{j=1}^{K}N_{j}=N_{1}+\sum N_{j}$ into
this, we have

$h=N_{1}’N_{1} \sum n_{j}$

$+N_{1}’( \sum n_{j})\sum N_{j}-N_{1}’(\sum n_{j})^{2}-\sum N_{j}’n_{j}^{2}$.

Using N\’i $N_{1} \sum n_{j}=\sum N_{j}’N_{j}n_{j}$ , we finally have

$h= \sum N_{j}’N_{j}n_{j}$

$- \sum N_{j}’n_{j}^{2}+N_{1}’(\sum n_{j})(\sum(N_{j}-n_{j}))$

$= \sum N_{j}’n_{j}(N_{j}-n_{j})+N_{1}’(\sum n_{j})(\sum(N_{j}-n_{j}))$

$\geq 0$ .

The equality holds strictly either $n_{j}=0$ for $j=$
$2,$

$\ldots,$
$K$ or $N_{j}=n_{j}$ for $j=2,$ $\ldots,$

$K$ . This means that
the equality $\sigma_{Bi}^{2}=\sigma_{Bk}^{2}$ holds when and only when the
variable $k$ is also a $qdv$ from Lemma 4.14. $\square$

From Lemmas 4.15,4.17,4.18, we have the following
theorem.

Theorem 4.19. The two cmteria $\Gamma_{H}$ and $\Gamma_{D}$ are qdv-
bound, while $\Gamma_{A}$ is not.

5. Discussions and Conclusions
An efficient VSM (variable selection method accord-
ing to a criterion) constructs a near optimum tree in
the average much less computation than the worst case
evaluation $O(L^{2}2^{L})$ with $O(L2^{L})$ storage, where $L$ is
the number of variables of the table.

In this paper we have developed the three criteria for
such VSM from three different standpoints: $\Gamma_{A}$ (activ-
ity criterion) from combinatorial, $\Gamma_{H}$ from entropy and
$\Gamma_{D}$ from discriminant analyses, for constructing an op-
timum tree in the sense of the number of nodes of the
tree.

The three criteria have been examined with respect
to the conditions which an optimum criterion should
satisfy: rejection of nonessential variables (nev-free),
selection of a totally essential variable and a quasi-
decisive variable (tev-bound and qdv-bound prop erties;
both $tev$ and $qdv$ are optimal variables). We have
shown that $\Gamma_{A}$ is nev-free, tev-bound but not qdv-
bound, while the two criteria $\Gamma_{H}$ and $\Gamma_{D}$ are neither
nev-free nor tev-bound but qdv-bound. It is hard to
claim that one criterion is better than others only from
these considerations. Consequently, a series of exper-
iments ‘was done, comparing the costs of these near
optimum trees also with those of optimum trees. It
shows that activity criterion is slightly better than oth-
ers (1.03 versus 1.05 in terms of optimality coefficient)
with comparable computation; the other two indicates
practically identical performance.

Entropy of a variable is defined simply through oc-
currence frequencies of all actions regardless its struc-
ture in the conditional part an$d$ discriminant criterion
inspects the rules in which the bit ((1) is standing in
the corresponding variable, while activity of a variable
takes into account also the values of the other variables
in the rule to some extent. This difference may have
produced the slightly better coefficient for the activity.

An extension of the criteria to the case that testing
a variable $i$ incurs a certain cost $C_{i}$ depending on the
variable (general “description cost”) may be to use a
quantity given by dividing the value of the described
criterion by $C_{1}$ as a new criterion. Then, however, for
such criteria one can not prove any of the formal prop-
erties which we have shown in this paper, although the
properties that $nev$ is a worst and $tev$ and $qdv$ are op-
timal variables remain valid.

VSM criteria for the case when the cost of a tree is
defined as the average cost of testing can be obtained in
the same way. We have observed a similar experimental
result concerning the comparative performance of the
three criteria. The combinatorial criterion for this cost
has also been studied in more detail in [Miy89].

The newly introduced discriminant criterion $\Gamma_{D}$ has
an evident computational advantage over entropic cri-
terion $\Gamma_{H}$ , although the required numbers of basic op-
erations (bit-test) remain the same order. This direc-
tion would provide us further development of the the-
ory.
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