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Discrete series for semisimple symmetric spaces
Toshihiko MATSUKI

The aim of this note is to explain the essence of the theory of discrete series for
semisimple symmetric spaces X = G/H in [7], [6] and [3].

Let g be a real semisimple Lie algebra and g, the complexification of g. Let ¢ be an
involution (62 = 1d.) of g and # a Cartan involution of g such that 08 = fo. Let g = hdq
and g = €@ s be +1, —1-eigenspace decompositions for ¢ and 8, respectively. Then

g=(ENho(Enaga(snh & (snaq).

Put h* = (ENnbh) @ i(knq), & = (ENh)di(s Nh) and g? = b + & + (s N q). Then
(B9 = ., (£9). = b, and (g%), = §,.

Let G, be a connected Lie group with Lie algebra g.. Let G, K, H,G¢ K? H¢ K,
and H. be the analytic subgroups of G. for g, & b, g, €, h% £, and b, respectively. Then
X = G/H is called a semisimple symmetric space and X¢ = G¢/K? is a Riemannian
symmetric space of noncompact type. Both of X and X¢ are “real forms” of a complex
symmetric space X, = G.[/H.. (Remark. We don’t have to assume that o lifts to G, in
the following.)

Example 1. Let G. = SL(2,C), G = SL(2,R), 8g =g and
a b a —b a b
J(c d)_(—c d)forg—(c d)EGC'
. a 0
K = S0(2),H = {(0 a_l) |a€ R>o},

K= {(8 ) lal=1hm={( ) laeRubemra+r=1),

Gd=SU(1,1)={(g 2) |a,beC,aa—bE=1},

X? is identified with the unit disc {z € C | |z| < 1} with the G%-action

Then




((—1 é)zzwfor ((—1 (_)) € G%and z € X9,
b a bz+a b a

X = G/H intersects with X on the real axis, and the H%orbits on the boundary B =
{z € C||z] = 1} of X¢ are {1},{—%},{z € B| Rez > 0} and {z € B | Rez < 0}.

Let Ax(X) (resp. Aga(X?)) be the space of K-finite (resp. K -finite) analytic func-
tions on X (resp. X?). Here “a function f on X¢ is K -finite” implies that it is H?-finite
and the representation of H¢ on the space spanned by H®f lifts to a holomorphic repre-
sentation of K.. Then the analytic continuation in X, gives an isomorphism f + f7 of
Ax(X) onto Aya(X?) which commutes with the left g.-action and the D(X)-action ([1]).
Here D(X) is the ring of G-invariant differential operators on X. By the analytic contin-
uation, D(X) is identified with D(X¢) the ring of G*invariant differential operators on
X , ‘

Let a? be a maximal abelian subspace of s¢ = i(¢N q) @ (s N q) such that a = a’N's
is maximal abelian in s N q. Let ©% be a positive system of the root system (a?) such
that (X%,Y) C Ry for a generic Y in a. Put A = expa and define a closed subset
At ={a€ A|a* > 1forall « € E*} of A. Let P be a minimal parabolic subgroup of
G? defined by

P = P(a®, %) = M?A°N?
where M? = Z;4(A?) (the centralizer of A? in K¢), A? = expa?, n? = ¥ ,en+0%(a%; @)
and N¢ = expn?. Put J = Nga(A)/Ngnu(A)Zga(A) = Ng(A)/Nkaa(A)Zx(A) where

N.(*%) is the normalizer of %x in *.
Proposition 1 (c.f. [1]). G= K(Unes mATm™)H
Proposition 2 ([4]). {H*mP | m € J} is the set of open H%-orbits on G*/P.

Let A be a complex linear form on a? and let ﬁ,(Gd /P; L)) be the space of hyperfunc-
tions on G satisfying f(zman) = a*~?f(z) for z € G, m € M% a € A? and n € N¢
where p = 23 en+ maa (mq = dim g%(a?%; @)). Suppose that Re(), a) > 0 for all « € X+,
Then the Poisson transform p, defined by

= B)dk = [ (TR (k)dk
(@) = [, flak)dk= [ k)P 5(k)
(where h : G — A? is the projection with respect to the Iwasawa decomposition G¢ =
K?A*N?) gives a G*-isomorphism of B(G*/P; L,) onto A(X*)x = {f € A(X?) | Df =
xa(D)f for D € D(X9)} ([2]). Here ¥, is the character of D(X?) parametrized by .
Note that x» = x, <= v € WX where W = Ny4(A?)/Zxa(A?) is the Weyl group of
B(ad).

Let g be an H%finite element in Nl}ﬁ(Gd/P;Lx). Then V = suppg is a closed H4-
invariant subset of G4/ P. ‘



Example 2([1]). Let V = H%oP = (KN H)zoP be a closed H?-orbit on G¢/P.. Define
a distribution T' on K<¢/M? by

(T, p) = /A olkzo)dk for ¢ € C=(K*/M?)
N

The distribution T is identified with an element Ty of B(G?/P;L,) by the inclusion
K%< G% and T) becomes H%finite under some condition on A. Flensted-Jensen defined
generating functions ¥y € Ax(X)h = {f € 4x(X) | Df = xa(D)f for D € D(X)} of
discrete series for X by v

(z) = (nD)() = /A  hlz™kao)dk.

(Discrete series for X are the representations of G realized in subspaces of L*(X), = {f €
L*(X) | Df = xa(D)f for D € D(X)} for some }). '

For V and m € J, define a subset Wy,, = {w € W | V(Pw™'P)? > H?mP and
V(Pv™1P)d 2 HimP if (Pv™1P)¥ ¢ (Pw™'P)¥} of W. Put Sy = WymA|a. Assume
Re(A, @) > 0 (a € L¥) for simplicity in the following.

Theorem ([6]). Let m € J, f € Ax(X) and put V = V; = supp py'(f"). Then there
exist nonzero analytic functions f, on K for all 1 € Sy, » such that

flkmam™H) = Z fu(B)a* P +o( Y. [a*7*))

HESY,m, PESYV,m 2

(k € K) when a* — +oo for all « € £%|q \ {0}.

Remark. Above formula gives the asymptotic behavior of f at the minimal bound-
aries of X. But we can see also the asymptotic behavior at other boundaries from this

formula since we have expansions of f at these boundaries and the boundary values are
analytic([6]).

Corollary ([6]). Let f € Ax(X)x. Then f € L*(X) <= (P) |a*| < 1 for any
# € Umey Svyma and a € A\ {1}.

Lemma ([7] Lemma 7 + [3] Lemma 1.2). (P) <= (i) rankX = rank(K/K N H)
and (ii) V; C the union of closed H?-orbits on G¢/P. ((ii)) <= dimVj} is the smallest.)

Remark. By the above corollary and the lemma, we don’t need case-by-case checkings
in [7] p.361-p.377.

Example 3. Let X = G/H = SU(2,1) x SU(2,1)/diagonal & SU(2,1). Then G¢ =
SL(3,C), H¢ & (GL(1,C) x GL(2,C)) N G¢ and s¢ & {hermitian matrices in g =

s[(3,C)}. Put
0 0
Y=1]10 0
10



Then a = RY is a maximal abelian subspace of §¢ N q? and a? = 34(Y) is a maximal
abelian subspace of s¢. Put &% = {oy, a3, o + a2} = {a € Z(a?) | (Y) > 0} and define
a minimal parabolic subgroup P of G? from a? and ©*. Let s; denote the reflection with
respect to a;(7 = 1, 2).

There are six H%orbits Vi = — 4+ 4+, Vo = + — +,V3 = + + —, V, =aa+, V; =+aa
and Vs = H?P =a+a on the flag manifold G¢ /P where V3, V, and V§ are closed and Vg is
open ([5]). We can see that Wy, 1 = {s251}, Wy,1 = {251, 5152} and Wy, ; = {5152} from
the diagram of the orbit structure. (The diagram implies that V;(Ps; P)¥ = V; UV, UV,
for instance.) We get easily that Re(s;s1A)(Y) < 0 and Re(s;s2A)(Y) < 0 from the
assumption Re(}A, ;) > 0(¢i = 1,2). Hence the property (P) holds for V;,V; and V3. On
the other hand, let V be a closed H%invariant subset of G¢ /P such that V Z V;UV,U V.
Then V OV, or V D V; and therefore Wy; 3 s; or Wy D s;. Since Re(s;A)(Y) > 0, the
property (P) does not hold. The discrete series coming from V; and V; are the holomorphic
and anti-holomorphic discrete series for X = SU(2,1) and the one coming from V; is the
other one.
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