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First of all, let us recall the definition of the properness of a continuous map.

DEFINITION 1.1.1. Let $f:Xarrow Y$ be a continuous map between locally compact Haus-

dorff spaces. $f$ is called proper iff one of the following equivalent conditions holds.

(1) $f$ is a closed map, and $f^{-1}(y)$ is compact for any $y\in Y$ .

(2) For any topological space $Z,$ $f:X\cross Zarrow Y\cross Z$ is a closed map.

(3) $f^{-1}(S)$ is compact for any compact subset $S$ of Y.

If $f$ is a proper map, then it follows easily that a closed subset $Z$ of X is compact iff

$f(Z)$ is contained in some compact set of Y.

DEFINITION 1.1.2. The action of a locally compact topological (Hausdorff) group $G$

acting continuously on a locally compact Hausdorff space $X$ is called proper iff the map

$G\cross X\ni(g, x)\mapsto(x, gx)\in X\cross X$ is proper. Equivalently, $\{g\in G : f(g, S)\cap S\neq\phi\}$ is

compact for every compact subset $S$ in $X$ . We call the action is properly discontinuous

iff $G$ is discrete and acts properly on $X$ .

Suppose that $H$ is a closed subgroup of G. $\Gamma$ is called a discontinuous group in $G/H$

iff $\Gamma$ is a discrete subgroup of $G$ and $\Gamma$ acts properly on $G/H$ .

LEMMA 1.1.3. Let $G_{i}(i=1,2)$ be locally compact groups and $L_{i},$ $H_{i}\subset G_{i}$ be clos$ed$

subgro$ups$ . $Su$ppos$e$ that $f:G_{1}arrow G_{2}$ is a (continuous) homomorphism such that

$f(L_{1})\subset L_{2},$ $f(H_{1})\subset H_{2}$ . Assume that $f(L_{1})$ is closed in $G_{2}$ .

1) $Ass$ume that $L_{1}\cap Kerf$ is compac$t$ . If the $L_{2}$ action on $G_{2}/H_{2}$ is proper, then the

$L_{1}$ action on $G_{1}/H_{1}$ is also proper.

2) $Ass$ume that $f(G_{1})H_{2}=G_{2}$ , that $G_{1}arrow G_{2}/H_{2}$ is an open $map$ , and that the
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quotients $L_{2}/f(L_{1}),$ $f^{-1}(H_{2})/H_{1}$ are compact. If the $L_{1}$ action on $G_{1}/H_{1}$ is proper,

then th$eL_{2}$ action on $G_{2}/H_{2}$ is also proper.

REMARK 1.1.4. If $G_{i}$ are (separable) Lie groups, then it is automatically satisfied from

the assumption $f(G_{1})H_{2}=G_{2}$ that the map $G_{1}arrow G_{2}/H_{2}$ is open.

PROOF OF LEMMA (1.1.3): 1) Fix any compact subset $S$ of $G_{1}$ . We have

$f(L_{1}\cap SH_{1}S^{-1})\subset L_{2}\cap f(S)H_{2}f(S)^{-1}$ .

If $L_{2}$ acts on $G_{2}/H_{2}$ properly, then $f(L_{1}\cap SH_{1}S^{-1})$ is contained in a compact set

because $f(S)$ is compact. Then $L_{1}\cap SH_{1}S^{-1}$ is compact, since $f_{|L_{1}}$ : $L_{1}arrow L_{2}$ is a

proper map as it is a composition of proper maps: $L_{1}arrow L_{1}/L_{1}\cap Kerfarrow L_{2}$ . That

is, $L_{1}$ acts on $G_{1}/H_{1}$ properly.

2) As $f(L_{1})$ is a closed and cocompact subgroup of $L_{2},$ $L_{2}$ acts properly iff $f(L_{1})$ acts

properly. So we may and do assume $f(L_{1})=L_{2}$ . Take a compact set $S_{1}$ of $G_{1}$ such

that $f^{-1}(H_{2})=S_{1}H_{1}$ and that $S_{1}$ contains the unit of $G_{1}$ . Fix any compact subset $S$

of $G_{2}$ . We can find a compact subset $\tilde{S}$ of $G_{1}$ such that $f(\tilde{S})H_{2}\supset S$ as it follows from

the assumption that $G_{1}arrow G_{2}/H_{2}$ is an open map and $f(G_{1})H_{2}=G_{2}$ . Then we have

$f^{-1}(L_{2}\cap SH_{2}S^{-1})\subset f^{-1}(L_{2})$ 寡 $\tilde{S}f^{-1}(H_{2})\tilde{S}^{-1}$ .

In particular, $f_{|L_{1}^{-1}}(L_{2}\cap SH_{2}S^{-1})$ is compact if $L_{1}$ acts properly on $G_{1}/H_{1}$ , because

$f_{|L_{1}^{-1}}(L_{2}\cap SH_{2}S^{-1})\subset L_{1}\cap f^{-1}(L_{2})\cap\tilde{S}f^{-1}(H_{2})\tilde{S}^{-1}\subset L_{1}\cap\tilde{S}S_{1}H_{1}S_{1}^{-1}\tilde{S}^{-1}$ .

Under our assumption $f(L_{1})=L_{2}$ , we have $L_{2}\cap SH_{2}S^{-1}=f_{|L_{1}}of_{|L_{1}^{-1}}(L_{2}\cap SH_{2}S^{-1})$

is compact. Thus $L_{2}$ acts on $G_{2}/H_{2}$ properly. 1

3



9

1.2. property (CI)

Let $H,$ $L$ be closed subgroups of a locally compact topological group $G$ . If $L$ acts

properly on $G/H,$ $t$hen any L-orbit is closed with a compact isotropy group. In general,

this is not a sufficient condition for the properness of the L-action. Anyway, the second

condition about compact isotropy group is easier to check. We call that the triplet

$(L, G, H)$ has property (CI) iff $L\cap gHg^{-1}$ is compact for any $g\in G$ . We call that the

triplet $(L, G, H)$ is proper iff $L$ acts properly on $G/H$ . Then the following is easily

checked from the definition (see [Bou] for the first par$t.$ )

LEMMA 1.2.1. With noiation as above, the following conditions are $eq$uivalent:

1) $(L, G, H)$ is proper,

1)’ $(H, G, L)$ is proper,

1) ” (diag $G,$ $G\cross G,$ $H\cross L$) is proper,

which imply the following equivalent conditions.

2) $(L, G, H)$ has property (CI)

2)’ $(H, G, L)$ has property (CI)

2) ” (diag $G,$ $G\cross G,$ $H\cross L$ ) $h$as property (CI)

As we mentioned above, it is easier to check property (CI) than properness. So we

are interested in how property (CI) approximates properness.

EXAMPLE 1.2.2.

1) Suppose that $G$ is a linear reductive Lie group, and that $H,$ $L$ are closed subgroups

reductive in $G$ (see \S 1.3 for definition). Then property $(CI)\Leftrightarrow properness$ . This is a
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restatement of one of our main results in [Ko], Theorem 4.1.

2) Suppose that $G$ is a linear reductive noncompact Lie group. Let $G=KAN$ be an

Iwasawa decomposition and let $H$ $:=A,$ $L$ $:=N$ . Then property (CI) is always

satisfied for $(L, G, H)$ , while $L$ never acts properly on $G/H$ .

3) If $L$ is normal in $G$ and if $HL$ is closed, then property $(CI)\Leftrightarrow properness$ .

4) Suppose that $G=GL(2, R)\ltimes R^{2},$ $H=GL(2, R)$ . Then for any connected closed Lie

subgroup $L$ of $G$ , property $(CI)\Leftrightarrow properness$ .

The proof of (2), (3) is easy. As for (4), we shall classify the maximal connected Lie

groups $L$ of $G$ such that $(L, G, H)$ has property (CI) in the proof in \S 2.2, which we also

see is in fact proper.

1.3. notations for reductive groups

In this subsection we set up notation.

Let $G$ be a real linear reductive Lie group, with real Lie algebra $\mathfrak{g}$ . Given a Cartan

involution $\theta$ of $G$ , we always write a Cartan decomposition of its Lie algebra as $\mathfrak{g}=t+P$ .

Fix a maximally abelian subspace a $cp.$ $a$ is called a maximally split abelian subspace

for $G$ . We write $W(\mathfrak{g}, a)$ for the Weyl group associated to the root system of $\Sigma(g, a)$ ,

R-rank $G$ $:=\dim a$ ( $\leq$ rank $G\geq$ ) c-rank $G$ $:=rankK$, and $d(G)$ $:=\dim G/K=\dim_{P}$ .

Let $H$ be a closed subgroup in $G$ . If there exists a Cartan involution of $G$ which stables

$H$ , then $H$ is called reductive in $G$ and $G/H$ is called a homogeneous space of reductive

type. In this case, $H$ is of finite connected components, $H$ has a Cartan decomposition

$H=(H\cap K)\exp(\mathfrak{h}\cap p)$ , and $\mathfrak{h}$ is reductive in $g$ , namely, the adjoint representation

$\mathfrak{h}arrow \mathfrak{g}1(\mathfrak{g})$ is completely reducible. Let $a_{H}$ be a maximally split abelian subspace for $H$ .
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Then there exists an element $g$ of $G$ such that $Ad(g)a_{H}\subset a$ . Put $a(H)$ $:=Ad(g)a_{H}$ ,

which is uniquely defined up to conjugacy of $W(\mathfrak{g}, a)$ .

REMARK 1.3.1. Definition-Lemma (2.6) in [Ko] is not accurate if $H$ is not an algebraic

group defined over $R$ (cf. [M]). Our definition here is equivalent to (2.6.1), and implies

(2.6.2) there. Any statement there is valid for a homogeneous space of reductive type

in this sense.

We will use the standard notation $N,$ $Z,$ $R,$ $C$ and H. Here $N$ means the set of

non-negative integers and $H$ means the R-algebra of quarternionic numbers.

2. Homogeneous spaces of semidirect product groups

2.1. semidirect product

Proposition 2.1.1 Let $G$ be a Lie group and $H$ be a closed subgroup. Assume that

$\mathfrak{h}$ contains a maximal semisimple algebra of $B$ . Then any connected closed subgroup $L$

such that $(L, G, H)$ has property (CI) is amenable.

PROOF: Let [ $=1_{s}+\mathfrak{l}_{n}$ be a Levi decomposition of I, where $[_{s}$ is a maximal semisimple

algebra and $I_{n}$ is the radical. It follows from the assumption that there exists $g\in G$

such that $[_{s}\subset Ad(g)\mathfrak{h}$ . Thus, $L\cap gHg^{-1}\supset L_{s}$ , where $L_{s}$ is a connected semisimple
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Lie subgroup with Lie algebra $\mathfrak{l}_{s}$ . Therefore $L_{s}$ must be compact. $L$ is thus a compact

extension of a solvable group, namely, an amenable group. 1

2.2. affine transformation group of $R^{2}$

Let $G=GL(2, R)\ltimes R^{2}$ , the affine transformation group of $R^{2}$ . The multiplicative

structure is given by $(g_{1}, v_{1})\cdot(g_{2}, v_{2})$ $:=(g_{1}g_{2},g_{1}v_{2}+v_{1})$ , where $g_{i}\in GL(2, R),$ $v_{i}\in$

$R^{2}$ . The Lie algebra $\mathfrak{g}$ is identified with $M(3,2;R)=\{(A, u) : A\in \mathfrak{g}\mathfrak{l}(2, R), u\in R^{2}\}$

equipped with $[(A_{1}, u_{1}), (A_{2}, u_{2})]=([A_{1}, A_{2}], A_{1}u_{2}-A_{2}u_{1})$. The adjoint action is

given by $Ad((g, v))(A, u)=(gAg^{-}, gu-gAg^{-1}v)$ . Let $H=GL(2, R)$ , the isotropy

subgroup of $G$ at $0\in R^{2}$ . Here is a classification of maximal connected Lie groups

acting properly on $G/H\simeq R^{2}$ .

PROPOSITION 2.2.1. Up to conjugacy the maximal connected Lie $su$ bgroups of $G$ acting

properly on $G/H$ are of the following forms;

$L_{1}=\{(\begin{array}{lll}e^{b} 0 a0 l b\end{array})$ : $a,$ $b\in R\}$ ,

$L_{2}=\{(\begin{array}{lll}1 b a0 1 b\end{array})$ : $a,$ $b\in R\}$ ,

$L_{3}=\{(\begin{array}{lll}cos\theta -sin\theta asin\theta cos\theta b\end{array})$ : $a,$ $b,$ $\theta\in R\}$ .

It can be checked directly that $L_{i}$ acts properly on $G/H(i=1,2,3)$ . Conversely,

if a connected group $L$ acts properly on $G/H$ , then $(L, G, H)$ has property (CI). We

shall classify $L$ such that $(L, G, H)$ has property (CI) in the following way. First, $L$ is-a

compact extension of a solvable group from Proposition (2.1.1). In our case, a maximal

compact sub group of $G$ is of one dimension, and thus $L$ itself is a solvable Lie group.
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So we can take a sequence $0=[(0)\triangleleft[(1)\triangleleft\ldots\triangleleft[(n)=$ [ such that { $(i)$ is a codimension one

ideal in $1^{(i+1)}$ . (It is easy to see that $n\leq 3.$ ) Now checking property (CI) is reduced to

the calculation of the normalizer $N_{\mathfrak{g}}(\mathfrak{l}^{(i)})$ and to the case of $\dim L=1$ (Lemma (2.2.3)).

The rest of this section is devoted to complete the proof of Proposition (2.2.1) by this

procedure.

LEMMA 2.2.2. A complete representative of the adjoint orbit in $\mathfrak{g}$ is given by

$X(a, b)$ $:=(\begin{array}{lll}a 0 00 b 0\end{array})$ $(a, b\in R, a\leq b)$ , $W(a)$ $:=(\begin{array}{lll}0 0 l0 a 0\end{array})$ $(a\in R)$ ,

$Y(a)$ $:=(\begin{array}{lll}a l 00 a 0\end{array})$ $(a\in R)$ , $V$ $:=(\begin{array}{lll}0 1 00 0 l\end{array})$ ,

$Z(a, b)$ $:=(\begin{array}{lll}a -b 0b a 0\end{array})(a, b\in R, b>0)$ .

LEMMA 2.2.3. Up to conjugacy, the one dimensional connected Lie subgroups of $G$

which act properly on $G/H$ have one of the follolving Lie algebras: $RZ(0,1),$ $RW(1)$ ,

$RW(0),$ $RV$ .

PROOF: We notice that if $a\neq 0$ then there exists $g\in G$ such that $Ad(g)RW(a)=$

$RW(1)$ . So the necessity is shown by checking the property (CI). We have already seen

the sufficiency before. 1

The proof of the following two lemmas is straightforward and so omitted.
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LEMMA 2.2.4. The normalizers of the Lie algebras in Lemma (2.2.3) are given by,

$N_{\mathfrak{g}}(RZ(0,1))=RZ(0,1)+RZ(1,0)$ ,

$N_{\mathfrak{g}}(RW(0))$ $=\{X\in M(3,2;R):X_{21}=0\}$ ,

$N_{\mathfrak{g}}(RW(1))$ $=RW(1)+RW(O)$ ,

$N_{\mathfrak{g}}(RV)$ $=RV+RX(2,1)+RW(O)$ .

Set $W’(a)$ $:=(\begin{array}{lll}a 0 00 0 l\end{array})$ ( $a\in$ R), $V’$ $:=(\begin{array}{lll}0 0 10 0 0\end{array})$ , which are conjugate to

$W(a),$ $V$ respectively. Put $P:=N_{G}(RW(0)),$ $Q:=N_{G}(RV)\subset G$ .

LEMMA 2.2.5.

(1) $Ad(G)Z(a, b)\cap \mathfrak{p}=\emptyset$ if $b\neq 0$ .

(2) $Ad(G)W(a)\cap p=Ad(P)W(a)\coprod Ad(P)W’(a)$ $(a\in R)$ .

(3) $Ad(G)V\cap p=Ad(P)V$ .

(4) $Ad(G)Z(a, b)\cap q=\emptyset$ if $b\neq 0$ .

(5) $Ad(G)W(a)\cap q=\{\begin{array}{l}\emptysetR^{\cross}W(0)=Ad(Q)W(0)\end{array}$ $ifa=0ifa\neq 0$

(6) $Ad(G)V\cap q=$ 垣 c\in R $Ad(Q)(V+cW(0))$ .

LEMMA 2.2.6. Up to conjugacy the two dimensional $con$nected Lie subgroups $L$ of $G$

which act properly on $G/H$ are of the following Lie algebras:

$RW’(0)+RW(0),$ $RW’(1)+RW(0),$ $RV+RW(0)$ .

PROOF: We have seen already that the corresponding Lie subgroups in Lemma $(2.2.3)\ovalbox{\tt\small REJECT}$

act properly on $G/H$ . Let us verify the necessity part by the property (CI). As [is a

solvable Lie algebra, we can assume that one of the Lie algebras in Lemma (2.2.3) is an
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ideal of [. First consider the case where $RW(O)\triangleleft\downarrow$ . Then $l\subset N_{\mathfrak{g}}(RW(0))=p$ . Up to

conjugacy by $P$ , we may assume that a complimentary subspace of $RW(O)$ in I is one

of $RW(O),$ $RW(1),$ $RW’(0),$ $RW$‘(1), $RV$ from Lemma (2.2.5). Then $RW(O)$ is excluded

because of linear dependency. $RW(1)$ is also excluded because $f?W(O)+RW(1)$ contains

a subspace $R(W(1)-W(O))$ , whose corresponding connected Lie subgroup cannot act

properly on $G/H$ . The remaining is properly discontinuous cases. Similarly, we can

treat the cases where $RZ(O, 1)\triangleleft l,$ $RW(1)\triangleleft[,$ $RV\triangleleft$ [, yielding Lemma. 1

The final step is done similarly by using the following lemma.

LEMMA 2.2.7. The normalizers of the Lie algebras in Lemma (2.2.6) are given by,

$N_{g}(RW’(0)+RW(0))=\mathfrak{g}$ ,

$N_{g}(RW’(1)+RW(0))=RX(1,0)+RW’(1)+RW(0)$ ,

$N_{g}(RV+RW(0))$ $=RX(2,1)+RY(O)+RV+RW(0)$ .

3. Homogeneous spaces of solvable groups

First we recall a nice topological property of a subgoup of a solvable Lie group due

to Chevalley.

FACT 3.1, [Ch]. Let $G$ be a l-connected (real) solvable group and $H$ be $a$ connected

subgroup of G. Then $H$ is closed and l-connected.

10



16

Our main theorem in this section is,

THEOREM 3.2. Let $G$ be a connected (real) solvable group and $H$ be a closed proper

subgroup of G. If the fundamental $gro$up $\pi_{1}(G/H)$ is finite, then there exists a discon-

tinuous $gro$up in $G/H$ which is isomorphic to Z.

This result should be in sharp contrast to the case of homogeneous spaces of reductive

type, which is a phenomenon first observed in [C-M] and is settled in general in $[Ko]$ .

FACT 3.3, [C-M; Wol; Wo2; Ku; Ko]. Let $G/H$ be a homogeneous space of reduc-

tive type. Then the followings are equivalent:

(1) Any discontinuous group in $G/H$ is fini$te$ .

(2) R-rank $G=R$-rank $H$ .

A stupid observation is when $G$ is solvable and reductive, namely, $G$ is isomorphic to

$R^{m}\cross T^{n}$ . Suppose that the first Betti number of $H$ is $n$ ‘. Then obviously,

$|\pi_{1}(G/H)|<\infty\Leftrightarrow n=n’\Leftrightarrow G=H$ or R-rank $G>R$ -rank $H$ .

This means a compatibility of Theorem (3.2) and Fact (3.3).

Thanks to Lemma (1.1.3)(2) with $G_{1}$ a universal covering group of $G_{2}$ $:=G$ and with

$H_{1}$ a connected subgroup of $G_{1}$ having the same Lie algebra of $\mathfrak{h}_{2};=\mathfrak{h}$ , Theorem (3.2)

is reduced to the following Theorem (3.2).

THEOREM 3.2’. Let $G$ be a l-connected (real) solvable group and $H$ be a connected

proper subgroup of G. Then there exists a discontinuous group in $G/H$ which is iso-

morphic to Z.
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PROOF: We proceed by the induction on the dimension of $G$ . Theorem (3.2) is clear

when $\dim G=1$ , namely, when $G\simeq R\supset H\simeq\{0\}$ . Suppose that $\dim G\geq 2$ . Then

there exists a connected normal subgroup $N$ of $G$ with $0<\dim N<\dim G$ . We will

divide into two cases according as $HN\subsetneqq G$ or $HN=G$.

I) Assume that $HN\subsetneqq G$ . A subgroup $HN$ is connected and so closed. So rr $:=$

$H/H\cap N=HN/N$ is a proper closed subgroup of $\overline{G}:=G/N$ . We write the canonical

projection $\pi:Garrow\overline{G}=G/N$ . From the inductive assumption, we can find a discrete

group I’ of $\overline{G}$ such that $\overline{\Gamma}$ is isomorphic to $Z$ and acts on $\overline{G}/\overline{H}$ properly. Fix an element

$\gamma\in G$ such that $\pi(\gamma)$ is a generator of $\overline{\Gamma}$ . Put $\Gamma$ $:=(\gamma$ }. We have $\pi(\Gamma)=\overline{\Gamma}$ , and therefore

$\Gamma\simeq Z$ and $\Gamma\cap N=\{e\}$ . On the other hand, $\overline{\Gamma}$ is discrete and so does F. Applying

Lemma (1.1.3)(1), we have now shown that $\Gamma$ acts on $G/H$ properly discontinuously.

II) Assume that $HN=G$. We have $G/H\simeq N/N\cap H$ and $N\cap H\subsetneqq N$ . Since

$\pi_{1}(N/N\cap H)=\pi_{1}(G/H)=\{e\},$ $N\cap H$ is connected. Thus $(N, N\cap H)$ satisfies the

assumption of Theorem (3.2) and $\dim N<\dim G$ . Therefore we can find a discrete

group $\Gamma\simeq Z$ of $N$ which acts on $N/N\cap H$ from the inductive assumption. Clearly, $\Gamma$

is a subgroup of $G$ acting properly discontinuously on $G/H$ . $1$

4. R-rank one semisimple group manifolds

Throughout this section, we assume that $G$ is a connected real reductive linear Lie

group. See \S 1.3 for notations. We shall find some property of a discontinuous group in
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a group manifold $G\cross G/diagG$ when R-rank $G=1$ .

LEMMA 4.1.1. If R-rank $G=1$ and $x\in G$ is a semisimple and non-ellipti $c$ element,

then $Z_{G}(x)$ is a direct product of a compact group and R.

PROOF: Choose a Cartan subgroup $J$ of $G$ containing $x$ and a Cartan involution $\theta$ such

that $\theta J=J$ . Put $L$ $:=Z_{G}(x)$ , then we have $\theta 1=$ I (see [War] Proposition 1.4.3.2).

As [is of maximal rank reductive Lie subalgebra of $\mathfrak{g}$ , we have $N_{G}(1)\supset L\supset L_{0}$ have

the same Lie algebra ([War] Proposition 1.4.2.4). Since $\theta N_{G}(1)=N_{G}(l)$ , we have

$\theta L=L$ . So we can write the center of $L$ as $C=(C\cap K)\exp(c\cap p)$ . As $L$ is a

reductive linear Lie group with finitely many connected components, if follows from

$\{x\}\simeq Z\subset C$ that $\dim c\cap p\geq 1$ . Then $c\cap p=p$ because $1=R$-rank $G\geq R$ -rank $L=$

$R- rank[L, L]+\dim c\cap P$ . Hence $L=(L\cap K)\exp(c\cap P)$ . $1$

LEMMA 4.1.2. If R-rank $G=1$ and $\Gamma$ is an infinite discrete $su$ bgroup of $G$ , then there

exists a compact set $S$ of $G$ such that $S\Gamma S^{-1}=G$ .

PROOF: An infinite discrete subgroup $\Gamma$ in a linear Lie group contains necessarily an

element of infinite order because $\Gamma$ has a torsion-free subgroup $\Gamma$
‘ such that $[\Gamma : \Gamma’]<\infty$

([Se]). Thus it suffices to show Lemma (4.1.2) when $\Gamma$ is isomorphic to Z. Let $\gamma$ be a

generator of $\Gamma$ and $\gamma=\gamma_{s}\gamma_{u}$ be a Jordan decomposition (see [War] Proposition 1.4.3.3).

We divide into two cases according as $\{\gamma_{s}\}$ is discrete in $G$ or not.

I) Assume that { $\gamma_{s}\rangle$ is discrete in $G$ . It follows from Lemma (4.1.1) that $\gamma_{u}\in Z_{G}(\gamma_{S})$

is the identity. Thus $\gamma=\gamma_{s}$ is contained in a maximally split Cartan subgroup $J$ .

Choose a Cartan involution $\theta$ which stables $J$ and we write $J=TA$ as usual. We

can write $\gamma=t$ exp(Y) where $t\in T,$ $Y\in a$ . Define a compact subset of $G$ by $S$ $:=$
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$K\{\exp sY:0\leq s\leq 1\}$ . Then $S\{\gamma\}S^{-1}\supset KAK=G$ .

II) Assume that \langle $\gamma_{s}$ } is not discrete in $G$ . Then $\gamma_{u}\neq 1$ since $\langle\gamma\rangle=\{\gamma_{s}^{n}\gamma_{u}^{n} : n\in Z\}$

is discrete in $G$ . By the theorem of Jacobson-Morozov, there is a homomorphism

$\psi:SL(2, R)arrow G$ such that $\psi((\begin{array}{ll}1 10 1\end{array}))=\gamma_{u}$ . There is a Cartan involution $\theta$

of $G$ such that $\theta\psi(SL(2, R))=\psi(SL(2, R))$ (see [He], p.277). In particular, $A$ $:=$

$\psi$ ( $\{(\begin{array}{ll}a 00 a^{-1}\end{array})$ : $a>0\}$ ) is a maximally split abelian subgroup of $G$ . Define a com-

pact subset of $G$ by $S:=K\psi$ ( $\{(\begin{array}{ll}1 x0 1\end{array})$ : $0\leq x\leq 1\}$ ) $\overline{\{\gamma_{s}\rangle}$. Then

$S\{\gamma\rangle$ $S^{-1}\supset K\psi$ ( $\{(\begin{array}{ll}l x0 1\end{array})$ : $x\in R\}$) $K\supset K\psi(SL(2, R))K\supset KAK=G$ .

I

LEMMA 4.1.3. Let $G$ be a connected reductive Lie group. Then the following conditions

are $eq$uivalent.

(1) R-rank $G\geq 2$

(2) There exists infinite discrete subgroups $\Gamma_{i}$ of $G(i=1,2)$ such that $\Gamma$ $:=\Gamma_{1}\cross\Gamma_{2}$

acts properly discontinuously on $a$ $gro$up manifold $G\cross G/diagG$ .

PROOF: We may restrict ourselves to the case where R-rank $G\geq 1$ .

Suppose that R-rank $G\geq 2$ . We find abelian subspaces $a_{1},$ $a_{2}\subset a$ such that $\dim a_{i}\geq$

$1$ and that $W(g, a)\cdot a_{1}\cap a_{2}=\{0\}$ . Put $A_{i}$ $:=\exp a_{i}$ , then $A_{1}$ acts properly on $G/A_{2}$ .

Take any lattices $\Gamma_{i}$ in abelian Lie groups $A_{i}(i=1,2)$ . Then the discrete group $\Gamma_{1}\cross\Gamma_{2}$

acts properly discontinuously on $G\cross G/diagG$ (see Lemma (1.2.1)).

Suppose that R-rank $G=1$ . Let $\Gamma_{i}(i=1,2)$ be both infinite discrete subgroups of

$G$ . Then there exists a compact set $S$ of $G$ such that $S\Gamma_{i}S^{-1}=G$ by Lemma (4.1.2).
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In particular, $(S\cross S)(\Gamma_{1}\cross\Gamma_{2})(S^{-1}\cross S^{-1})=G\cross G$ , which implies that any subgroup

$H$ of $G\cross G$ acting properly on $G\cross G/\Gamma_{1}\cross\Gamma_{2}$ must be compact. Thus, $\Gamma_{1}\cross\Gamma_{2}$ cannot

act properly discontinuously on $G\cross G/diag$ G. 1

THEOREM 4.1.4. Let $G$ be a connected noncompact reductive Lie group. Then the

following conditions are equivalen$t$ .

(1) R-rank $G=1$

(2) Any torsionless discontinuous group $\Gamma$ in $G\cross G/diagG$ is of the following form

up to $s$witch of factor: $\Gamma=\{(\gamma, p(\gamma)):\gamma\in\Phi\}$ with a subgroup $\Phi\subset G$ an $d$ with

a homomorphism $\rho:\Phiarrow G$ .

PROOF: $2$ ) $\Rightarrow 1$ ) If R-rank $G\geq 2$ , then there exists a discrete group $\Gamma_{i}\simeq Z^{n_{i}}(n_{i}\geq 1)$

of $G$ such that $\Gamma_{1}\cross\Gamma_{2}$ acts properly discontinuously on $G\cross G/diagG$ as we saw it in

the previous lemma.

$1)\Rightarrow 2)$ Suppose that $\Gamma$ is a discontinuous group in $G\cross G/diagG$ . Let $p_{j}$ : $G\cross Garrow$

$G(j=1,2)$ be natural projections to the j-th factor. Let $\Gamma_{j}$ $:=Kerp_{j}\cap\Gamma$ for $j=1,2$ .

Then $\Gamma_{1}\cross\Gamma_{2}$ is regarded as a subgroup of $\Gamma\subset G\cross G$ , and so is also a discontinuous

group in $G\cross G/diagG$ . It follows from the previous Lemma that at least one of $\Gamma_{j}$

must be finite if R-rank $G=1$ . We can assume $\Gamma_{1}$ is a finite group after changing

factor if necessary. As $\Gamma$ is torsion-free, a finite subgroup $\Gamma_{1}$ must be trivial, namely,

$p_{1|\Gamma}$ : $\Gammaarrow G$ is injective. Now $\Gamma$ is of the desired form if we define $\Phi$ $:=p_{1}(\Gamma)$ and

$\rho$ $:=p_{2}op_{1_{|\Gamma}}^{-1}.1$

REMARK. R.Kulkarni and F.Raymond first proved (1) $\Rightarrow(2)$ when $G=SL(2, R)$ (see

Theorem 5.2 and Introduction in [Ku-R]). They also show that $\Psi$ can be chosen to

be discrete. The proof there depends on the fact that no discontinuous group in $G\cross$
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$G/diagG$ contains a $subgroup\simeq Z^{2}$ if $G=SL(2, R)$ . However, this is not always true

even if $G$ is of R-rank one. For example, there exists a discontinuous $group\simeq Z^{n-1}$ in

$G\cross G/diagG$ if $G=SO(n, 1)$ .

5. A necessary condition for the existence of a uniform lattice

5.1. theorem

A homogeneous space of reductive type $G/H$ does not always admit a uniform lattice.

There are known two necessary conditions for the existence of a uniform lattice. One

is the requirement that there should exist a discontinuous group $\simeq Z$ in $G/H$ (see

Fact $(3.3))$ , and the other is a requirement from Euler characteristic ([Ko] Proposition

(4.10), see also [Ku] Corollary 2.10, [Ko-O] Corollary 5 for partial results):

FACT 5.1.1. For the existence of a uniform lattice, $(G, H)$ must satisfy that

1) R-rank $G>R$ -rank $H$ unless $G/H$ itself is compact.

2) If rank $G=rankH$ then c-rank $G=c$-rank $H$ .

By a comparison with various reductive subgroups in $G$ , we can exclude the possibility

of the existence of uniform lattice in some of homogeneous spaces of reductive type.

The following simple theorem is based on this idea.
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THEOREM 5.1.2. Let $G/H$ be a homogeneous space of reductive type. If there exists

a closed subgroup $G$‘ reductive in $G$ such that

(5.1.3)(a) $a(G’)\subset W(\mathfrak{g}, a)\cdot a(H)$

(5.1.3)(b) $d(G’)>d(H)$

then $G/H$ does not admit a uniform lattice (see \S 1.3 for notations).

PROOF: Suppose that there were $\Gamma\subset G$ , a uniform lattice in $G/H$ . Then $\Gamma$ is virtually

torsionless and the cohomological dimension $cd_{R}(\Gamma)=d(G)-d(H)$ from Corollary

5.5 (1) in [Ko]. On the other hand, the condition (5.1.3)(a) implies that $\Gamma$ acts on

$G/G’$ properly discontinuously. Using Corollary 5.5 in [Ko] again, we have $cd_{R}(\Gamma)\leq$

$d(G)-d(G’)$ . Thus $d(G’)\leq d(H)$ , which contradicts (5.1.3)(b). 1

REMARK 5.1.4. One of the simplest applications is a comparison of $G/H$ with $G/G$ by

taking $G’=G$ , yielding Fact (5.1.1)(1). Indeed, if R-rank $G=R$-rank $H$ , then Theorem

(5.1.2) implies

$G/H$ has a uniform $lattice\Leftrightarrow d(G)=d(H)\Leftrightarrow G/H$ is compact.

Here, the second equivalence is derived immediately from a fiber bundle structure

$G/H\simeq K/_{H\cap K}H\cap K\cross P/\mathfrak{h}\cap P$ .

The proof of Theorem (5.1.2) is almost obvious as we saw above. Throughout the

rest of this section we will clarify its typical applications and limitations.

5.2. example
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EXAMPLE 5.2.1. Let $G/H=U(i+j, k+l;F)/U(i, k;F)\cross U(j, l;F)$ , where $F=R,$ $C,$ $H$ ,

and $i\leq j,$ $k,$ $l$ . Here, we use a notation: $U(p, q;R)=SO(p, q),$ $U(p, q;C)=U(p, q)$ , and

$U(p, q;H)=Sp(p, q)$ (of rank $p+q$). If $G/H$ admits a uniform lattice, then $G/H$ is

compact ($i=j=0$ or $i=k=0$), or $H$ is compact $(i=l=0)$ , or $0=i<l\leq j-k$ .

PROOF: To see the condition $0=i<l\leq j-k$ , it suffices to apply Theorem (5.1.2)

with $G’=G_{i}$ , where $G_{1}$ $:=U(i+t, k+l;F),$ $G_{2}=U(i+j, i+t;F)$ , and $t:= \min(j, l)$ . $1$

REMARK 5.2.2. Assume moreover that $F=R$ in the above Example. Then it is

also necessary that $jkl\equiv 0mod 2$ from Fact (5.1.1)(2). Conversely, it is known that if

$i=l=0$ or if $(i,j, k, l)=(O, 2n, 1,1),$ $(0,4n, 1,3),$ $(0,4,2,1)$ , then there exists a uniform

lattice in $G/H$ .

5.3. semisimple orbit

Let us apply Theorem (5.1.2) to a semisimple orbit of the adjoint action. First

we fix notations. Let $G$ be a connected real linear reductive Lie group and $X$ be an

element of its Lie algebra $g$ . $G\cdot X\simeq G/Z_{G}(X)$ is called an (adjoint) orbit in $g$ , where

$G\cdot X$ $:=\{Ad(g)X : g\in G\},$ $Z_{G}(X):=\{g\in G:Ad(g)X=X\}$ .

COROLLARY 5.3.1. In the above setting, suppose that $X$ is a semisimple element. If

$G\cdot X\simeq G/Z_{G}(X)$ admits a uniform lattice, then there is an elliptic element $X_{1}\in \mathfrak{g}$

such that $Z_{G}(X)=Z_{G}(X_{1})$ . In particular, the orbit $G\cdot X$ carries a G-invariant complex

structure.

REMARK 5.3.2. We should note that $G$ itself never carries a complex Lie group struc-

ture if $G\cdot X\simeq G/Z_{G}(X)$ admits a uniform lattice with a nonzero semisimple element
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$X\in \mathfrak{g}$ . This follows from the fact that R-rank $Z_{G}(X)=$ R-rank $G$ if $G$ is a complex

reductive Lie group.

PROOF OF COROLLARY (5.3.1): There exists a Cartan involution $\theta$ which stables

$Z_{G}(X)$ . Since rank $Z_{G}(X)=rankG$ ([War] Proposition 1.4.3.2) and since $G/Z_{G}(X)$

admits a uniform lattice, we have c-rank $Z_{G}(X)=c$-rank $G$ from Fact (5.1.1)(2). There-

fore $Z_{\mathfrak{g}}(X)$ contains a fundamental Cartan subalgebra $\mathfrak{j}^{c}$ of $\mathfrak{g}$ . We may and do assume

$\mathfrak{j}^{c}$ is $\theta$-stable and we write $X=X_{1}+X_{2}$ corresponding to the direct sum decomposition

$\mathfrak{j}^{c}=t^{c}+a^{c}$ $:=\mathfrak{j}^{c}\cap t+\mathfrak{j}^{c}\cap P$ . Then the first statement of Corollary follows from Theorem

(5.1.2) with $H=Z_{G}(X)\subset G’=Z_{G}(X_{1})$ combined with the following Claim (5.3.3)

The last statement is directly from a (generalized) Borel embedding. 1

CLAIM 5.3.3. With notation as ab$ove$, we have

1) $Z_{G}(X)=Z_{G}(X_{1})\cap Z_{G}(X_{2})$ ,

2) R-rank $Z_{G}(X)=R$-rank $Z_{G}(X_{1})$ ,

3) either $Z_{G}(X)=Z_{G}(\prime X_{1})$ or $d(Z_{G}(X))<d(Z_{G}(X_{1}))$ .

PROOF OF CLAIM (5.3.3): The first claim is a direct consequence of the equation

$Z_{G}(X)=\theta(Z_{G}(X))=Z_{G}(\theta X)$ . Take a maximally split abelian subspace $a_{1}$ of $Z_{\mathfrak{g}}(X_{1})$

such that $a_{1}$ contains $X_{2}$ . This is possible because $X_{2}\in p\cap Z_{g}(X_{1})$ . Then $a_{1}\subset$

$Z_{\mathfrak{g}}(X_{1})\cap Z_{\mathfrak{g}}(X_{2})=Z_{\mathfrak{g}}(X)$ . This means that $a_{1}$ is also a maximally split abelian

subspace of $Z_{g}(X)$ , whence the second part.

Let us prove the third part. Suppose $Z_{G}(X)\subsetneqq Z_{G}(X_{1})$ . As the centralizer of

an elliptic element is necessarily connected, it follows that $Z_{\mathfrak{g}}(X)\subsetneqq Z_{\mathfrak{g}}(X_{1})$ . Noting

$\mathfrak{j}^{c}\subset Z_{\mathfrak{g}}(X)\subsetneqq Z_{\mathfrak{g}}(X_{1})$ , we find an $\alpha\in\triangle(Z_{\mathfrak{g}}(X_{1}), \mathfrak{j}^{c})\backslash \triangle(Z_{\mathfrak{g}}(X), \mathfrak{j}^{c})$ . If we write
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$\alpha=\alpha_{1}+\alpha_{2}$ corresponding to the direct sum decomposition $\mathfrak{j}^{c*}=t^{c*}+a^{c}$ “, we have

$\alpha_{1}(X_{1})=0,$ $\alpha(X)=\alpha_{1}(X_{1})+\alpha_{2}(X_{2})\neq 0$ . Fix a nonzero element $Y\in \mathfrak{g}(\mathfrak{j}^{c};\alpha)$ and

set $Z$ $:=Y-\theta Y\in p$ . Since $\alpha\neq\theta\alpha,$ $Y$ and $\theta Y$ are linearly independent. Now

we have $[X_{1}, Z]=\alpha_{1}(X_{1})Z=0$ , and [X, $Z$] $=\alpha_{2}(X_{2})(Y+\theta Y)\neq 0$ . Thus $Z\in$

$p\cap(Z_{\mathfrak{g}}(X_{1})\backslash Z_{\mathfrak{g}}(X))$ . Hence we have shown $d(Z_{G}(X))<d(Z_{G}(X_{1}))$ . $1$

EXAMPLE 5.3.4. The following homogeneous space of reductive type is an elliptic orbit

which admits a uniform lattice and which does not carry any invariant Riemannian

metric: $SU(2n, 2)/U(2n, 1),$ $SO(2n, 2)/U(n, 1)$ , and $SO(4,3)/SO(4,1)\cross SO(2)$ .

5.4. semi$s$imple symmetric space

Let us recall the notion of $\epsilon$-family of semisimple symmetric spaces introduced by

Oshima-Sekiguchi. We also review some necessary notions of semisimple symmetric

pair for the benefit of the reader. Let $\mathfrak{g}$ be a semisimple Lie algebra, $\sigma$ be an involution

of $\mathfrak{g},$

$\theta$ be a Cartan involution of $\mathfrak{g}$ commuting with $\sigma$ . Let $\mathfrak{g}=t+p=\mathfrak{h}+q$ be direct

sum decomposition corresponding $\theta,$ $\sigma$ respectively. Put $\mathfrak{h}^{a}$ $:=\{X\in \mathfrak{g} : \sigma\theta(X)=X\}=$

$\mathfrak{h}\cap t+q\cap p$ . Then $(\mathfrak{g}, \mathfrak{h}^{a})$ is called the associated symmetric pair of $(\mathfrak{g}, \mathfrak{h})$ . Note that

$(\mathfrak{h}^{a})^{a}=\mathfrak{h}$ . Take a maximal abelian subspace $a_{\mathfrak{p},q}$ of $p\cap q$ . Then $\Sigma(a_{p,q}):=\Sigma(\mathfrak{g}, a_{\mathfrak{p},q})$

satisfies the axiom of root system and is called the restricted root system of $(\mathfrak{g}, \mathfrak{h})$ .

The signature of a restricted root is a map $(m^{+}, m^{-}):\Sigma(a_{\mathfrak{p},q})arrow N\cross N$ defined by

$m^{+}(\lambda)$ $:=\dim \mathfrak{h}^{a}\cap g(a_{\mathfrak{p},q}; \lambda),$ $m^{-}(\lambda)$ $:=\dim \mathfrak{g}(a_{\mathfrak{p},q} ; \lambda)-m^{+}(\lambda)$ . A map $\epsilon:\Sigma(a_{\mathfrak{p},q})\cup$

$\{0\}arrow\{1, -1\}$ is called a signature of $\Sigma(a_{\mathfrak{p},q})$ if $\epsilon$ is a semigroup homomorphism

with $\epsilon(0)=1$ (see [O-S2] (1.9.3.1)). Note that any map $\Psiarrow-\{1, -1\}$ is uniquely

extended to a signature, where $\Psi$ is a fundamental system for $\Sigma(a_{\mathfrak{p},q})$ . To a signature

$\epsilon$ of $\Sigma(a_{\mathfrak{p},q})$ , we associate an involution $\sigma_{\epsilon}$ by $\sigma_{\epsilon}(X)$ $:=\epsilon(\lambda)\sigma(X)$ if $X\in \mathfrak{g}(a_{\mathfrak{p},q}; \lambda)$ ,
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$\lambda\in\Sigma(a_{p,q})\cup\{0\}$ . $Then_{\sim}\sigma_{\epsilon}$ defines a symmetric pair $(\mathfrak{g}, \mathfrak{h}_{\epsilon})$ . The set $F((g, \mathfrak{h}))$ $:=$

{ $(\mathfrak{g},$ $\mathfrak{h}_{\epsilon}):\epsilon$ is a signature of $\Sigma(a_{\theta,fl})$ } is called a $\epsilon$-family of symmetric pairs ([O-S2]

\S 6). Among $\epsilon$-family, there is a distinguished symmetric pair called basic characterized

by,

$m^{+}(\lambda)\geq m^{-}(\lambda)$ for any $\lambda\in\Sigma(a_{Pfl})$ such that $\frac{\lambda}{2}\not\in\Sigma(a_{\mathfrak{p},q})$ .

It is known that there exists a basic symmetric pair of $F=F((g, \mathfrak{h}))$ unique up to iso-

morphisms ([O-S2] Proposition 6.5). If the basic symmetric pair of $F$ is a Riemannian

symmetric pair, then $m^{-}\equiv 0$ and $F$ is $K_{\epsilon}$-family in the sense of [O-S1]. Typical ex-

amples of basic symmetric pairs are $(\mathfrak{g}, t)$ (Riemannian symmetric pair), $(g, g)$ (trivial

case), ( $g+g$ , diag g), $(g_{C}, g),$ $(u(p, q;F),$ $u(m;F)+u(p-m, q;F))(F=R, C, H)$ , whose

associated symmetric pair are $(\mathfrak{g}, \mathfrak{g}),$ $(\mathfrak{g}, t),$ $(g_{C}, t_{C}),$ $(u(p, q;F),$ $u(m, q;F)+u(p-m;F))$ ,

respectively. Now we are ready to state our application of Theorem (5.1.2) to semisimple

symmetric spaces:

COROLLARY 5.4.1. If an irreducible symmetric space $G/H$ admiis a uniform lattice,

then the associated symmetric pair $(\mathfrak{g}, \mathfrak{h}^{a})$ is $b$asic in $\epsilon$-family $F((g, \mathfrak{h}^{a}))$ .

The proof of Corollary (5.4.1) is derived from Theorem (5.1.2) combined with (1),(2)

of the following lemma.

LEMMA5.4.2. With notations as above, let $(\mathfrak{g}, \mathfrak{h})bebasicinthe\epsilon- familyF=F((g, \mathfrak{h}))$

and $(g, \mathfrak{h}_{\epsilon})$ be not basic in F. Then we have

1) $a(H^{a})\sim a(H_{\epsilon}^{a})$ by an element of $IV(g, a)$ .

2) $d(H^{a})>d(H_{\epsilon}^{a})$ .

3) R-rank$(H)=R- rank(G/H^{a})\leq R- rank(G/H_{\epsilon}^{a})=R- rank(H_{\epsilon})$ .
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PROOF: (1) is clear because $a_{p,q}$ is a maximally split abelian subspace of $H_{\epsilon}^{a}$ as well as

of $H^{a}$ . The proof of (2) and (3) is based on the classification in [O-S2](see also [Be]).

They are trivial if $H$ is compact, because $H^{a}=G$ in this case. If $H$ is noncompact, we

can check them by using Table V; Table I and (1.14-16) in [O-S2]. ( $\mathfrak{h}$ of $D_{l,A}^{1}$ in Table

I there should read so $(l, C).)1$

Here is a list of $G/H_{\epsilon}^{a}$ which does not admit a uniform lattice from Corollary (5.4.1).

We omitted here the cases where R-rank $G=$ R-rank $H_{\epsilon}^{a}$ (see Fact $(5.1.1)(1)$ ). In

particular, $H^{a}$ is necessarily noncompact. We also omitted the cases treated in \S 5.2,

namely, an indefinite Grassmann manifold $G/H=U(i+j, k+l;F)/U(i, k;F)\cross U(j, l;F)$ ,

$(F=R, C, H)$ . (We can find the same neccesary condition with that of Example (5.2.1)

if we apply Corollary (5.4.1).)

Table 5.4.3.

There is still a room for applications of Theorem (5.1.2). Here is a list of some

other typical examples of $G/H$ which does not admit a uniform lattice. For most of
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parameters below, $G’$ stands for a reductive group satisfying the conditions in Theorem

(5.1.2). We have no intention to make a complete list in Table $sA^{4}t$ .

Table 5.4.4.

We give here some remarks on Table (5.4.4).

1) In the first line, $g(n)$ stands for one of the following classical Lie algebras: $g[(n, R)$ ,

$\mathfrak{g}\mathfrak{l}(n, C),$ $\epsilon 0^{*}(2n),$ $zo(n, C),$ $\epsilon p(n, R),$ $zp(n, C)$ : We also remark that $\mathfrak{g}’=g(p+q)$

should be modified by $g(p+q-1)$ if $g(n)=50^{*}(2n)$ or so $(n, C)$ and if both $p$ and $q$

are odd integers.

2) As for $(\mathfrak{g}, \mathfrak{h})=(\epsilon 0^{*}(2I, C),$ $u(l, n-l))$ , the choice $\mathfrak{g}’=\epsilon 0^{*}(4I+2)$ is valid for $2l<n$ .

If $3l\leq 2n<4l$ or $n=2l$ , then we can choose $9’=\epsilon 0^{*}(4n-4l+2),$ $\mathfrak{g}’=\mathfrak{s}0^{*}(2n)$ ,

respectively.

The condition $3l\leq 2n\leq 6l$ looks strange. It is interesting to note that if $(n, l)=$

$(4,1)$ or $(4, 3)$ , $G/H=SO^{*}(2n)/U(l, n-l)$ admits a uniform lattice.

3) As for $(g, \mathfrak{h})=(sp(n, R),$ $sp(l, C))$ , we have to use Example (4.11) in [Ko] if $n=2l$

instead of Theorem (5.1.2).

REMARK 5.4.5. It is likely that a complex irreducible semisimple symmetric space
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$G_{C}/H_{C}$ admits a uniform lattice if and only if $G_{C}/H_{\mathbb{C}}$ is locally isomorphic to a group

manifold. From Fact (3.3) and Tables (5.4.3) and (5.4.4), we are left with $(g_{C}, \mathfrak{h}_{C})=$

$(\mathfrak{g}\mathfrak{l}(2n, C),$ $zp(n, C)),$ $(\epsilon o(2n+1, C),$ $\epsilon o(2n, C)),$ $(e_{6,C}, f_{4,C})$ .
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