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Split Rank One Semisimple Symmetric Spaces and c~Functions

J. Sekiguchi

ABSTRACT: 94Llit rank one semnioimnnle oymmelric ofaced and their
étmuctuaeo qre discugsed and a mnetfod of comrAuting c—functiions foxr
suck oymmetric o4aces are exrlained. Hoot harto of thio note are

taged on a joint word with 7. Ogdina.

§1. Split rank one semisimple symmetric spaces. Let g be a
semisimple Lie algebra and let ¢ be its involution. Denote by h and g
the (+1)- and (-1)-eigenspaces of 0o, respectively. Then (g,bh) is
called a (gemisimrle) osvymmelric Aair. It is known the existence of a
Cartan involution 06 of g commuting with o. Let g=[+p be the
corresponding Cartan decomposition. Take a maximal abelian subspace a
of pNng and a maximal abelian subspace j of g containing a. Then dim |
(resp. dim a) is called the 2an& (resp. 9ALil rané) of (g,h). In
particular, (g,b) is of 9ALi{ 1ank one if dim a = 1. There are a lot
of such symmetric pairs which we are going to list up (cf. [0S2,

Table 111):.1,(p,q)=(s0(p+l1,q+l1),s0(p+1,q)), Id(p,q)=(so(p+q+1,1),

1 1
S0(p+1)@50(q,1)), [,(p,a)=(su(p+1,a+1),u(p+1,a)), 19(p, )=
(su(p+q+1;1),su(p+1)®su(q,1)$iR), Ia(p,q)=(sp(p+1,q+1),
sp(p+l,q)®sp(l)), Ig(p,q)=(5p(p+q+1,1),sp(p+1)®sp(q,l)), Ii=(f4(_20).
$009)), I5=(f, .0 ,50(8,1)), 11, (p)=(sl(p+2,R),8l(p+1,R)), 11{(p)=
(su(p+1,;1),50(p+1,1)), IIz(p)z(sp(p+2,R),sp(p+1,R)®sp(1,R)), Ilg(p)=
(SP(p+1,1),u(p+1,10), 1I5=(f, , ,50(5,4)), 11§=<f4(_éo),

sp(2,1)®sp (1)), 1111(p>=(so<p+2,c),so(p+1,¢)), III?(p)=
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(s0{(p+1,1)®s0(p+1,1),50(p+1,1)), IIIz(p)=(sl(p+2,€),gl(p+1,¢)),

IIIf(p)=(su(p+1,1)esu(p+1,1),su(p+1,1)), 1113(p)=(sp<p+2,¢),

sp(p+1,O)espcl,lyy, IIlg(p)=(sp(p+1,1)esp(p+l,1),5P(p+1,1)), III4=
d *
= H = 2
(f4,so(9,€)), Ir, (f4(_20)®f4(_20),f4(_20)), IV, (p)=(s50 (2p+4),

so*(2p+2)®so*(2)), IV?(p)=(so(2p+2,2),u(p+1,1)), Iv (p)=(su*(2p+4),

2

* C % d _ | -
su” (2p+2)®su” (2)8R), IV, (p)=(su(2p+2,2),sp(p+1,1)), IVg=(ep  sgys
d

s0(9,1)8R), IVa=tee  1uy T acoaoy? V1=(sl(3,m),sl(3,R)), vV, =(su(3,3),
d

) B d - * i 3 - -—
sp(3,R)), V,=(su (6),s1(3,018iRy, VB“(es(z)’f4(4))’ Va=(es _ogy7

2

su¥(6)®su(2)).

In this note, it is assumed that (g,h) {0 of 9ALit rand one
unfess olherwiose otalted. Let G be a connected Lie group with LieG=g.
Suppose that o is lifted to G and write its lifting by the same
letter. Then G/G° (G%=(g€G;0(g)=g)) is called a (semisinhle)
oynmelric d9%ace belonging to (g,bh). In general, for a given (g,bh),
there are non-isomorphic symmetric spaces belonging to (g,h). In the
case where G=$nig, F(g,h)=n1(G/Go) is generated by one element and
depends only on (g,b). There is a one to one correspondence between
the totality of non isomorphic symmetric spaces belonging to (g,bh)
and that of subgroups of F(g,bh). For this reason, a classification of
symmetric spaces of split rank one is accomplished if F(g,h) is
determined for each pair (g,h). Now the result is as follows (cf.

?(p), IIIg(p).

[Se331): (A.1) F(a.h)=7Z if (g,b) is one of I,(p, 1), 11
IV;(p), Ivg. (A.2) F(q,h)=23 if (g,h) is one of V. (i=1,2,3).

(p) (p>1),

(A.3) F(a,h)=Z, if (g,h) is one of I,(p,a) (@>1), II

d \ d d d
lIz(p), IIIl(p), Illl(p).(p>1), III3(p), V2.

For example, consider III? (it =1, 2, 3, 4). In these cases,

1
(A.4) F(aq,h)=1 otherwise.

symmetric spaces are nothing but group manifolds. Let G be a
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connected simple Lie group whose Lie algebra g is of 4A{{{ rank one.

Then g is isomorphic to one of so(p,1), su(p,l), sp(p,l), f4(_20).

Since GxXG/AG=G, a group manifold G with actions of GXG from both
sides is a special case of semisimple symmetric spaces. If g=so(p,1)
(p>2), then G is SOO(p,l) orvSpino(p,l), the latter is simply
connected. If g=sp(p,1) (p>1) or f4(_20), then G=#ntg. In the case
where g=su(p,1l), there are.infinite]y many non-isomorphic choices of

G because fnfg = SU(p,1)/2 nl(ﬁntg)=z. Return to our situation.

p+1’
It is easy to show (B.1) if #F(g,h)<*® and if G is a real form of a

simply connected complex Lie group, then G/Gz is simply connected and

(B.2) if #F(g,h)==, then | is not semisimple and the center of the
motion group of the univeysaf covering of (fntg)/(ﬁntg)o has infinite
center.

From the assumption, there is Y€a such that {(eigenvalues of
adg(Y)) is {(0,%1} or {0,+1,*2) and that a=RY. Put gj=(Z€g;[Y,Z]=jZ)
(j=0, *1, %£2). Then 008 leaves each 9 invariant. Since (06)2=1,

define g?=(2€gj;092=t2} and put m§=dimg§, mj=m;+m5 (j=1, 2). Then theﬁ

following hold:(C.1) mI+mI>0. (C.2) 1f m;>0, then mI=m (C.3)

X
=0 if and only if (g,h) is Riemannian. (C.4) If mI=m;=O, then

-(g,h) is of Is—type (for the definition of Is—type, see [0S1]). Put

nozglegz, no=g_leg_2 and denote by A, No’ No the analytic subgroups

n_, respectively. Let Po be the

of G corresponding to a, "o’ o

parabolic subgroup of G whose unipotent radical is Nc and let

PonvoNo‘be its Langlands decomposition. May assume that there is a

closed subgroup A, of Go such that A0=A A. Moreovef, D) if (g,h) is

1 1
split rank=1 but rank>l, then M, is connected. I am now going to

mention connected components of Mo for the remaining cases. For
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simplicity, we assume that G/H (H=C§) (0 oinAly connected and of 2rank

one. Then M NH=M and #(M /M NH) coincides with the number of open

o]

H-orbits of G/ P In particular, (E.1) for simply connected

g,o0"’

symmetric spaces SOO(p+1,q+1)/SOO(p+1,q) (q}l),

Sp(p+2,R)/Sp(p+1,RI)xSp(1,R), F /Spin0(5,4). there are two open

4(4)
H-orbits of G/Po 0 (E.2) for simply connected symmetric spaces

SL(p+2,R)/GL+(p+1,R) (p>1), there are four open H-orbits and (E.3)
for a simply connected symmetric space SOo(p+1,2)/SOO(p+1,l), Mo has

infinitely many connected components.

§2. c~functions for Riemannian symmetric spaces. Consider a
Riemannian symmetric space G/K of non-compact type. dooumne thdat G/K

(s of rané one. Any zonal spherical function on. G/K is expressed as

e(v—p)H(gk)

¢, (8K) =fK dk. By changing variables, we have ¢ (gK)=

f_e(U_O)H(gn)eﬁ(v+p)H(n)dﬁ. Let G=KApN be an Iwasawa decomposition
N

and put 0p=LieA

. Let 0+ be its positive Weyl chamber. Since a=a

P P P
from the assumption that G/K is of rank one, we may take Y€0; which
. . . . -(v-p) (tY) ty
is so chosen as in 81. Define CoygVr= lim o ¢,(e K

. . . %
which is convergent when v varies an open subset of a has an.

p,c’

e-(v+o)H(B) -

(wvy= [_ dn and is called Xeris4

N
-gfandra’ s c—funcltion. The quantity CG/K(V) plays an importaﬁt role

integral formula CG/K

in the determination of the ?lancherel Keaoure of G/K (cf.[HC11).

I am going to explain two methods of computing c(v), the first
one is due to Harish-Chandra (HC-method) ([HC11) and the second one
is due to Gindikin-Karpelevic ([GK11), Helgason ([H11) énd Schiffmann

([Scl]) (GKHS-method). HC-#effod: It is known that ¢v is an
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eigenfunction of the Laplace- Beltrami operator L of G/K, that is,

B L¢v=A(L)(v)¢v for a.constant A(L)(v)’depending on v. If fv(t)
=wv(etYK), then fv(t) satisfies an ordinary differential equation
obtained from (F). Taking x=—(sht)2 as a new variable, we find that
the differential equation in question turﬁs out to be a %augsian
Ryrerseometric differential eguation of . From properties of L
(G.l)fv(t) is a real analytic solution of t near tQO and (G.Z)fv(0)=1.
Therefore fv(t) =F(a,b,c;—(sht)2) for some constants a, b, ¢
depending on m;, my. Then, by using a well-known formula for
hypergeometric functions

COIDB-0 | " qmprl, 0B +1
r(B)rcy o' X &, omyrl,as

Cy)T¢o-8)>
*Feorcy-pr X1 Pre8.8-ve1, 8001

which holds when x<-1, we can obtain a concrete formula for c

(H) F(a,B,7;%)

><1>—‘>4|r—-

G/K(\))
GKHS-#effod: On the other hand, Gindikin and Karpelevic computed c(v)

in an alternative way. Their method is available for general

Riemannian symmetric space case and is improved by Helgason and

Schiffmann in order to study analytic continuations of intertwining

operators between principal series representations. In particular, in
the rank one case, Helgason and Schiffman showed that the integral

S e—(v+p)H(B)dﬁ is reduced to [ {(1+lX|2)2+|T12}S
N 8.1%8.2

9 9
|X1° and |T|" are positive definite quadratic forms on s_, and g_,,

dXdT, where

respectively and that the last integral becomes

m,-1
fgtil dtlfoto {(1+t )~ +t2} dty, which is easily computed. As a

result, c (v) is expressed as a product of Gamma functions.

G/K
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§3. c-functions for semisimple symmetric spaces. In the sequel, I
focus/my attention to explain how to obtain concrete forms of
c—functions for arbitrary symmetric spaces of split rank one. As
explained in §2, Harish-Chandra's c-function is defined as a leading
term of the "aeaymAlolic exraenoion” of a zonal spherical function on
G/K. Noting this, T. Oshima introduced c—functions for arbitrary
semisimple symmetric spaces as "Coundary vafues" of certain joint

eigenfunctions of all the invariant differential operators.

Hereafter, G/H (H=GY9) is assumed to be simply connected. Let D(G/H)
be the algebra of invariant differential operators on G/H. Since
D(G/H) is commutative, for any algebra homomorphism x of D(G/H) to C,
it is possible to define a system of differential equations on
G/H:(JX)Du=x(D)u for YDED(G/H). If | is a maximal abelian subspace of
g containing a, then Homc(D(G/H),C) is parametrized by iE due to
Harish-Chandra. Let ﬁ(G/H;(JX)) be the Ayrerfunction solution space
to the system (JX). Then ﬁ(G/H;(JX)) is a G-space. Now assume that G
is linear. namely, #F(g,h)<=, for simplicity. Due to Xelgadgon Tyre
Theoren of Oshima (cf.[O011) , if x is "generic", there is a non-zero
G-invariant subspace ﬁ(G/H,@;(JX)) of E(G/H;(JX)) for each open

H-orbit O of G/Po via Poisoon ltranosformnalion and ﬁ(G/H;(JX)) is a

direct sum of ﬁ(G/H,O;(Jx)), where 0 runs through all the open
H-orbits. Then, basically, to each open H-orbit 0, there associates a
"c-function” for G/H which is defined by use of "6oundery value mero"
to a compaét boundary component of a compactification of G/H. In the
case of F(g,h)=Z, a modification is needed in the definition of

c~-functions. Nofe: As mentioned at the end of 81, there is a unique

open H-orbit of G/Pa o’ whereas sometimes not.

- 6 -
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Before treating the general case, I discuss two simpler cases.

First consider the case where (g,h) is of {e—type but not Riemannian.
Then (g,h) is one of Ii(O.q) (i=1, 2, 3) and Ii. In this case,
GKHS-method is available for the computation of c-functions for G/Go
because we caﬁ obtain an integral formula similar to that for

Riemannian symmetric space and the integral reduces to

m1—1 2.8

Iy 1(1—lx12)§_dx=f‘3t (1-t%)$dt if (g,h)=1;(0,q) and

m,-1 m, -
2.2 21s e, 1 o 2
Iy xq 2{<1 11221712 Paxat=S5t, b at Sot,

2
_)2

1
{(1—t1

2\s
+t2} dt,

m -1 2

otherwise. In spite that the integrals f;t (1-t").,dt,

H+ 0

m, -1 m,-1
o 1 o 2 2.2 ,2)s . .
fotl dt1f0t2 {(l—tl) +t2} dt, are divergent and lose their

meaning in general, it possible to regularlize these divergent
integrals by careful investigation of intertwining integrals.

Next consider the case where {(g,h) is one of Ii(p,q),(i=1,2,3)
and the corresponding symmetric space is G/H, where G=¢nf{g and
H=(Fnt9)o. In this case, a c-function for G/H is nothing but the
leading term of a left K-invariant eigenfunction of the Laplace

-Beltrami operator L on G/H. So let ¢s(gH) be a left K-invariant

G/H
function on G/H with the condition (F') L¢S=A(L)(s)ws for a constant
s€C. Then ws(gK)=¢s(g_lH) is regarded as a left H-invariant

eigenfunction of LG/K on the Riemannian symmetric space G/K. From

this, it follows that ws is real analytic. Because of,the
decomposition G=KAH, fs(t)=ws(etYH) determines ws itself and fs(t)
satisfies a differential equation obtained from (F') which turns out

to be a hypergeometric differential equation for the variable

5
x=-(sht)". So far, the argument is parallel to HC-method for
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Riemanniann case except that the value f (0)=¢ (eH) is unknown on the
contrary to ¢(G.2). But using an integral formula for ws and using the
c-function for G/K, we can determine the value fS(O) and therefore
the c-function for the space in question.

Return to the general case. For a moment, we assume that (Aeze
(o @ non—-zero {eft K-fixed solution ux to (JX). If LG/H is the
Laplace-Beltrami operator on G/H, then

a_ + - omt 9 “tho )Q— = 2—[1 )2
<K){( ) +(mlctht+mltht+-mzcth_t+2m2th_t i (=ts my+my | <Y E ()

tY

where fs(t)=ux(e H) and. s is a complex number depending on x. First

consider the case where m;=0. Then, rewriting (K) by use of the
variable x=—(sht)2, we have
(K') [x(1- x)(d )2+{c—(a+b+1)X)Q—-ab]v(x)=0

dx dax ’
h v(x)=f (t) and a= 1(s+1m +m ) b= 1( s+1m +m ) c-l(m++m++1) For
where s T35 Ty 2 2™ Tt Ty T
the same reason as in the case 1. (p g) eXplained before, fs(t) is a
real analytic solution of (K) near t=0 and (K') is a hypergeometric
‘differential equation. Hence we find that fs(t) coincides with
F(a,b,c;—(sht)z)\up to a constant factor. On the other hand, since
ux(gH) is a left K-invariant solution of (Fx), ux(gH) has an integral

-1

representation ux(gH)=fK£s(g k)dk, where is is a left H-invariant
Ayrtearfunction section of a certain line bundle over G/Po’ As in the
case of zonal spherical functions on Riemannian symmetric spaces, the

-1 - -~ + n - 3
last integral is rewritten as f_is(g 1n)e v p)H(n)dn, where vei;

N
depending on s linearly. (Beufion: 2on’t confude the grour H with the

Junction H(g) for $wasauwa decomfAosition.) Then, since fs(t)=

. 1

iV - =y -(s+zm, +m,) t

S e 7T WP Man it sollows that time 2 sct) =
N

t=o+
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[ e WHPIHIM 2 The last integral is nothing but the Harish-
N

1
(s-zm -mo)t

Chandra's c¢c-function. On the other hand, lim e 271 2 f(t) is the

t2+
quantity yhat we want to compute if the limit exists. With the help
of (H), we finally obtain a concrete formula for the leading term of
the asymptotics of ux(gH). Next consider the case mé#O. In this case,
due to (C.2), we find that

d 2 + + - d
G +(mlctht+m tht+2mocth2t+2m2th2t)““

dt 1 dt
- 4 .2 +, 0+ v vj_d
-4{<dt,) +[(m1+m2)ctht +mytht )dt,},
where t'=2t. Hence an argument parallel to the case m;=0 goes well by
. + - + . +, 4+ - :
changing m,, ml, m2 with m1+m2, m2, 0, respectively.

We give here some remarks on the asymptotics of left K-invariant
solutions of (JX)' (L.1) The relation (C.2) first observed by Oshima
is easy to show but plays a crucial role in the determination the
leading term in question. It is left open whether for arbitrary
parameters mf, mg (that is, forgetting (C.2)), it is possible to
obtain a connection formula for solutions of (J) similar to (H) or
not. (L.2) It is also important to construct left H-invariant

hyperfunction sections is(g) of certain line buﬁdles’over G/P The

(Xx-pYH(g)

g,o’

function e is a left K-invariant section and is constructed

by using an Iwasawa decomposition. Instead, to construct is' we need
a theorem of J. Bernstein aon the analytic continuation of complex

powers of polynomials. (L.3) Consider the case SU(2,1)/S0(2,1). In

this case, the concrete form of e(S+2)tu(etYH)’is

_{1,_2224_(]2!2_1}{)2) (S+9‘)/2(1*’222*(IZ[2+IX)2) (s-2>/2
- ] - —
(re b l212-1:01 5 2 (1ve b 2| 2hinyy SRR
(s+2)t  tY
ue "H)

(M dxdzdz

s. 0 JRxC

substituted with £=0 and and lim e

to+©

is convergent when
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Res<-1 and its limit value is
s-0-2 s+

2 2 2 - -2 2 2. -s+0-2 -
(Ng 92 fo¢{1+22 +(lz|"-ix) %y (1+2z2°+(lz|"+ix) ") dxdzdz

substituted with 2=0 if it were convergent. It is possible to

regularize this definite integral but it seems hard to compute it
directly unlike the integrals for Riemannian and le—type cases
mentioned before. In spite this, due the the armument above based on
HC-method, we can compute the value of (Ns,O) and the result is
2_28F(23+3)F(s+2)—2 up to a constant factor independent of s.

Return to the differential equation‘(Jx). In the above, we
assumed the existence of a non-zero left K-invariant solution td (JX).
But this does not hold in general. Next I mention two cases for which
HC-method or GKHS-method is available.

Assume that F(g,b)=Z and G/H (o 9imAly connected. Then, due to
(A.1), G/H is the universal covering space of one of
Soo(p+1,2>/soo(p+1,1), SU(p+1,1)/S0(p+1,1),
SU(p+1,1)xSU(p+1,1)/ASU(p+1,1), SU(2p+2,2)/Sp(p+1,1). In this case, G
has infinite center. Let K be the analytic subgorup of G
corresponding to [. Assume that f{fere (9 a relalive K-invariant
golution to the syoten (JX). Under this assumption, the argument
explained before goes well and a similar conclusion is obtained. For
example, treat the case G/H=the uhiversal covering space of
SU(2,1)/50¢(2,1). Then the c-function for G/H is the integral (NS,Q)

for arbitrary parameters s, £. A regularization of (NS Q) equals to

’

. S P s+0+2 s-0+2 3
51n§(s+ﬂ)51n§(s 2y I'( > yr¢ 5 )F(s+2)

sinns s+Q+3 s-0+3

up to a constant factor.

I( 2 yr( 5

Next consider the case where #F(g,bh)<~ and G/Po o has plural

W (s+2)

open H-orbits. Then G/H is one of SOo(p+1,q+1)/SOO(p+1,q) (q>1),

- 10 -



SL(p+2,R)/GL+(p+1,R), Sp(p+2,R)/Sp(p+1,R)xSp(1,R), F /Spino(5,4).

4(4)
At first, note that G/H is of rank one. Now we treat the case G/H=

SOO(p+1,q+1)/SOO(p+1,q) (@>1). For a generic Xx, ﬁ(G/H;(JX)) has two
G-invariant sﬁbspaces. One is spanned by left translations of a
K~invariant function but the pther is not. Since G/H is of rank one,
GKHS-method is available for the determination of the c-function for
such a G-invariant subspace. In fact, considering the intertwining
integral between'degenerafe principal series for G, we find that the

c-function coincides with the special value (t=0) of the definite

integral
—g-T- 2
[y g (U xhZ-ayn By 37T RO 2 (- yi?) 2 e 4yl ) Taxdy
R¥xR ‘
_ @ p-1 @ q-1 2 2. -s-t-(p+q)/2 2 2.2 2.t
= cf drlfor2 (l+ri-r,0, ((1+r]-r;)"+4ry) dr,

which is divergent, but is regularizable. Hence we can obtain a
concrete form of the c-function in this case. Similar arguments go
well for the remaining symmetric spaces SL(p+2,R)/GL_(p+1,R),
Sp(p+2,R)/Sp(p+1,R)xSp(1,R), Fycqy/SPin (5,4).

Last, I give a comment on general c-functions. For simplicity, -
assume that #E(g,h)(m and that there is an open dense H-orbit of
G/Py . 1f rank of G/H = r+l, then the set Xi(x;ﬂ(G/H;(JX))#O) has
one continuous parameter and r discrete parameters.'The discrete
parameters run through a set isomorphic to N'. Hence X=CxN'. Then
the c-function is written as c(s,u) with s€C, peN'. On the other
hand, consider the Riemannian form Gd/Kd of G/H and its c-function.
Then (0) c(s,n) satisfies difference equations same as those for

c d(v). Since ¢ d d(v) is known, (0) implies that c(s,u) can be

Gd/K G /K

obtained if one knows c¢(s,0) which is the c-function for the case
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where K-invariant solution to (JX) exists. In this way, it is

possible to obtain c(s,x) for all parameters x€X.
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