GENERALIZED MODULAR SYMBOLS AND COHOMOLOGY OF ARITHMETIC GROUPS Armand Borel

Institute for Advanced Study Princeton, NJ 08540

This talk was to a large extent a report on some joint work with Avner Ash [1].

Let G be the group of real points of a semi-simple $\mathbb Q$ -group, K a maximal compact subgroup of G, X=G/K and Γ an arithmetic subgroup of $G(\mathbb Q)$. The real cohomology of Γ may be identified with $H^+(\Gamma \setminus X;\mathbb R)$. In this paper, we give two related geometric constructions of infinite, locally finite, cycles whose dual cohomology classes are non-zero, in fact restrict non-trivially to the cohomology of certain faces of the Borel-Serre boundary. One family of such cycles consists of the fundamental classes of the so-called "generalized modular symbols", namely the quotients $(\Gamma \cap M) \setminus X_M$, where M is the group of real points of a Levi $\mathbb Q$ -subgroup of a parabolic $\mathbb Q$ -subgroup. For suitable choices of Γ , they admit natural embeddings in $\Gamma \setminus X$ are orientable and are shown to have a strictly positive intersection with compact cycles associated to the unipotent radical of P. The cohomology classes thus obtained are all not square integrable.

[1] A. Ash and A. Borel, "Generalized modular symbols", Proceedings of a Workshop on cohomology of arithmetic groups, Luminy 1989, to appear in Springer Lecture Notes in Mathemaitcs.