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Satake compactifications of arithmetic quotients

W. Casselman

Introduction

Throughout this paper, let

$G=$ the R-rational points on a semi-simple group defined over $\mathbb{R}$

$K=$ a maximal compact subgroup of $G$

$X=$ the corresponding symmetric space, which may be identffied with $G/K$

For the moment suppose that $G$ is defined over $Q$ and that $\Gamma$ is an arithmetic subgroup.
In the paper [Satake $1960a$], Satake showed how to associate G-covariant compact-

ffications of $X$ to irreducible representations of $G$ , and in the subsequent paper [Satake
$1960b]$ he showed how some of these could give rise to compactifications of the arithmetic
quotient $\Gamma\backslash X$ . He gave several examples of his procedure, but it was not clear which
compactffications of $X$ could be used for this purpose–i.e., which of them were what
will be defined in this paper to be geometrically rational. Shortly afterwards it was
shown in [Bore11962] that those associated to Q-rational representations of $G$ were ge-
ometrically rational. But it was also known from examples among what are now known
as Baily-Borel compactifications that the rationality of $\pi$ was not actually necessary. It

seems to have remained an open problem, however, to formulate a relatively simple nec-
essary and sufficient criterion for geometric rationality. This paper is an attempt to do

this.

The literature on compactffications dealing with these questions, outside the early
papers already mentioned, is rather sparse. One exception is the book [Ash et al. 1975],

where the case by case argument of [Baily-Bore11966] was replaced by a more direct proof

of geometric rationality. Another exception is [Zucker $1986b$], where the general question
of geometric rationality is broached perhaps for the first time since the early papers of

Satake and Borel. Indeed, as will be apparent, this paper was to a large extent inspired

by Zucker’s. In order to avoid confusion, however, I should point out that not only is the

logic of the discussion in \S 3 of his paper rather unclear, but that in addition there is an

actual error in his Proposition (3.3). (This does not, however, affect the remainder of the
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paper. Roughly speaking, the Corollary to $the\backslash Propositi_{oI1}^{\kappa}$ should replace his Assumption
1 as a hypothesis.)

I take pleasure in thanking Satake for his part in arranging my present one-year visit
to Tohoku University, during which this paper was written.

Details will appear in a subsequent paper, in which compactifications associated to

reducible representations will be treated as well.
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1. Compactifications of $X$

Let $(\pi, V)$ be an irreducible finite-dimensional complex representation of $G$ possessing a
vector $v$ such that $K$ is the stabilizer of the line $[v]$ through $v$ . Such a representation,
or rather the triple $(\pi, V, v)$ , I call projectively spherical. In Satake’s paper, he starts
out with an arbitrary irreducible representation of $G$ , and then considers the associated
representation on the space of Hermitian forms on $V$ , which contains a positive definite
form invariant under $K$ . The representation I would look at would be the one generated
by this form.

1.1. Proposition. A$n_{J^{\gamma}}$ irred $u$cible projectively $spl_{1}erical$ representation $(\pi, V, v)$ of $G$

is strongly rational over $\mathbb{R}$ .

That is to say that both $V$ and $v$ may be chosen real, and the stabilizer of the highest
weight vector is a real parabolic subgroup of $G$ . Several proofs must be possible, but

the one I have in mind is from representation theory: any irreducible finite-dimension
of $G$ can be embedded into a principal series representation, that is to say a G-space of

functions

$Ind$ ( $\chi$ I $P,$ $G$ ) $=$ { $f\in C^{\infty}(G,$ $U)|f(pg)=\chi(p)f(g)$ for all $p\in P,$ $g\in G$ }

where $P$ is a minimal real parabolic subgroup of $G$ and $(\chi, U)$ is a finite-dimensional
representation of $M_{P}$ . The Iwasawa decomposition $G=PK$ implies that the restriction
of this to $K$ is

$Ind(\chi|K\cap P, K)$ .

If $\pi$ is projectively spherical, Frobenius reciprocity implies that $\chi$ must be a character of

order one or two.

If the kernel of $\pi$ is contained in $K$ , and in particular if $\pi$ is essentially faithful, the
map $g\mapsto[\pi(g)v]$ identifies $X=G/K$ with a subspace of the projective space $P(V)$ . Let
$\overline{X}=\overline{X}_{\pi}$ be the closure of $X$ in $\mathbb{P}(V)$ .

Fix a minimal real parabolic subgroup $P_{\emptyset,R}$ . Let $A$ be the connected component of
a maximal R-split torus in $P_{\emptyset,R}$ which is stablaunder the Cartan involution determined
by $K$ . Let $Y$ be the orbit of $[v]$ under $A$ .

1.2. Lemma. Every G-orbit in $\overline{X}m$ee$ts\overline{Y}$ .
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This follows immediately from the Cartan decomposition $G=KAK$ and the compactness

of $K$ .

What does $\overline{Y}$ look like? Suppose

$v= \sum_{\alpha\in\Sigma(v)}v_{\alpha}$

to be the decomposition of $v$ into eigenvectors of $A$ . Define $\Omega(v)$ to be the convex hull in
$X_{R}^{*}(A)$ of the set $\Sigma(v)$ of characters appearing with non-zero coefficient in this decom-
position, and Q3(v) to be its extremal vertices. Then $\Omega(v)$ is a closed, bounded, convex
polyhedron of dimension equal to the dimension of $A$ . If $F$ is any face of $\Omega(v)$ , then

define $v_{F}$ to be the sum of the the $v_{\alpha}$ for $\alpha$ in F–the A-projection of $v$ onto the space

spanned by the eigenvectors corresponding to characters in $F-$ and $Y_{F}$ the A-orbit of
$[v_{F}]$ in $\mathbb{P}(V)$ . If $\lambda$ in $X_{*}(A)$ is a one-parameter subgroup of $A$ , then for any $t$ in $\mathbb{R}^{x}$ we
have

$\pi(\lambda(t))v=\sum t^{\langle\lambda,\alpha\rangle}v_{\alpha}$ .

If $F$ is the interior of the closed face of $\Omega(v)$ where the linear functional $\lambda$ achieves its
maximum value $\mu(\lambda)$ , then

$\pi(\lambda(t))v=t^{-\mu(\lambda)}\sum t^{\mu(\lambda)-\langle\lambda,\alpha\rangle}v_{\alpha}$ ,

and

$\lim_{tarrow\infty}[\pi(\lambda(t))v]=\sum_{a\in F}v_{\alpha}=[v_{F}]$
.

Hence the closure of $Y$ contains $Y_{F}$ . A standard argument from [$I\langle empf$ et al. 1973]

implies further that, conversely, the union of all the $Y_{F}$ is compact. In other words:

1.3. Lemma. The clos$ure$ of the A-orbit of $[v]$ in $\mathbb{P}(V)$ is th $e$ union of the orbits of the
$[v_{F}]$ as $F$ varies over th$e$ faces of the convex $hu11$ of the eigencharacters of $v$ . The orbit
$Y_{F}$ is contained in the clos$ure$ of the orbit $Y_{E}$ if an$d$ on$ly$ if $F$ is contained in the closure
of $E$ .

The reason that $\Omega(v)$ is simple to describe is this:

1.4. Proposition. In these circumstances, the extremal weiglits of $v$ are the same as
the extremal weights of $V$ .
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One way to show this is to apply representation theory again, since there is a well known

explicit formula for the coefficients of the highest weights of $v$ .

How are the faces of $\Omega(V)$ parametrized? Fix a minimal parabolic subgroup $P_{\emptyset}$ ,rw

containing $A$ , let $W$ be the Weyl group, and let $C$ be the corresponding positive Weyl

chamber in root space. Since $\Omega(V)$ is Weyl-invariant, it suffices to describe those faces that

meet the positive Weyl chamber $C$ . For this I need some notions introduced apparently

by Satake. Let $\Delta_{R}$ be the basis for the positive real roots determined by $P_{\emptyset,R}$ , and let $\gamma$

be the highest weight of $\pi$ . Set

$\Delta_{R,\pi}=$ the roots in $\Delta_{R}$ which are not orthogonal to $\gamma$

Call a subset of $\Delta_{\mathbb{R}}\pi$-connected if each of its components in the Dynkin diagram

contains an element of $\Delta_{R,\pi}$ . lf $\Theta$ is a subset of $\Delta_{R}$ I follow Zucker’s notation and set

$\kappa(\Theta)=$ the largest $\pi$-connected subset of $\Theta$

$\zeta(\Theta)=$ the orthogonal complement of $\kappa(\Theta)-i.e.$ , the elements of $\triangle_{R}$ not edge-
linked to $\kappa(\Theta)$ in the Dynkin diagram

$\omega(\Theta)=\kappa(\Theta)\cup\zeta(\Theta)$ .

A subset $\Theta$ is called $\pi$-saturated if it $\Theta=\omega(\Theta)$ . Let $W_{\Theta}$ be the subgroup of $W$ generated

by reflections $s_{\alpha}$ corresponding to elements $\alpha$ in O. Of course $s_{\alpha}\gamma=\gamma$ for $\alpha$ in $\zeta(\Delta_{R})$ ,

hence the orbit of $\gamma$ under $W$ is the same as its orbit under $W_{(\Theta)}$ . In fact:

1.5. Proposition. The map taking $\Theta$ to the convex $hu11$ of its orbit under $W\ominus is$ an

inclusion-preserving bijection between the $\pi$-connec$tedsu$bsets of $\triangle_{R}$ and the faces of

the convex $hu11$ of the W-orbit of $\gamma$ meeting $C$ .

The standard parabolic subgroups are those containing $P_{\emptyset,R}$ . They are parametrized by

subsets of $A_{R}$ , so that the split centre $A_{\Theta}$ of the reductive component of the parabolic

subgroup $P\ominus is$ isomorphic to the intersection of kernels of $\alpha$ in O. Recall further that

for any $\Theta$ the subset $A_{\Theta}^{++}$ is the se$t$ of all $a$ in $A_{\Theta}$ with $\alpha(a)>1$ for all the $\alpha$ in $\Delta_{R}$ not

in O. The earlier calculation shows:

1.6. Proposition. If th$e$ image under $\lambda\in X_{*}$ ,ee $(A)$ lies in $A_{\ominus}^{++}$ and $F$ is the face

corresponding to $\omega(\theta)$ then $\lim_{tarrow\infty}[\pi(\lambda(t))v]$ lies in $Y_{F}$ .

In these circumstances, define $P_{F}$ to be the parabolic subgroup corresponding to $\Theta$ in

the usual parametrization of parabolic subgroups containing a given minimal one.
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1.7. Proposition. The parabolic subgroup $P_{F}$ is th $e$ stabilizer of the $sub$space $V_{F}$ ,

which is $equal$ to Fix$(N_{F})$ . If $Q$ is the parabolic $su$ bgroup of $G$ corresponding to the
subset $\Phi$ , then Fix$(N_{Q})=V_{F}$ if and only if $\kappa(\Theta)\subseteq\Phi\subseteq\Theta$ .

Define $L_{F}$ to be the reductive subgroup of $M_{F}$ isogenous to the product of $A_{F}$ , the

semi-simple factor of $M_{F}$ whose real Dynkin diagram is that spanned by $\zeta(\Theta)$ and any
compact factors of $M_{F}$ . Let $G_{F}$ be the semi-simple quotient $M_{F}/L_{F}$ .

1.8. Proposition. The group $L_{F}$ is th $e$ projective kernel of the representation of $M_{F}$ .

on $V_{F}$ .

Let $X_{F}$ be the orbit of $[v_{F}]$ under $G_{F}$ , the boundary component corresponding to $F$ .

It is isomorphic to the symmetric space of $G_{F}$ .

1.9. Proposition. The orbit of $[v_{F}]$ under $G$ is isomorphic to the fibre $pr$oduct of $G$

and $X_{F}$ with respect to $P_{F}$ .

$c$

The boundary components $of\overline{X}$ therefore correspond exactly to the $\pi$-saturated parabo-

lic subgroups of $G$ , by which I mean those conjugate to a standard parabolic subgroup
corresponding to a $\pi$-saturated subset of $\Delta_{R}$ .

The isogeny class of $G$ is not determined by the Dynkin diagram of its real roots,

but rather by a certain collection of data on the Dynkin diagram of its complex roots
$\Delta_{\mathbb{C}}$ , which is a special case of a Galois ind$ex$ , whose definition I recall from [Borel-Tits

1965: $i$] $n$ some generality.
Suppose $k$ to be any subfield of $C$ , and suppose $G$ to be defined over $k$ . Choose a

torus $S$ in $G$ , maximally split over $k$ , and let $T$ be a maxim$a1$ torus in the complexification
$G(C)$ of $G$ . Fix a Borel subgroup $B$ of $G(C)$ containing $T$ , and let $\triangle c$ be a basis for the

positive roots of $(G(C), T)\det e$rmined by the choice of $B$ . The maximal proper parabolic

subgroups of $G(C)$ containing $T$ are parametrized by the maximal proper subsets of $\Delta_{\mathbb{C}}$ ,

hence essentially by elements of $\Delta_{\mathbb{C}}$ . If $\sigma$ is any automorphism of $C/k$ and $Q$ is any

parabolic subgroup of $G$ containing $B$ , then there will exist a unique G-conjugate of its
Galois-conjugate $Q^{\sigma}$ containing $B$ . Using the parametrization of the maximal parabolic

subgroups by elements of $\Delta_{\mathbb{C}}$ , we have therefore a homomorphism, which Borel and

Tits $call*$ , from the automorphism group $Aut(C/k)$ to the automorphism group of the

complex Dynkin diagram. $This*$-action of $Aut(C/k)$ on the Dynkin diagram turns out

not to depend on any of the choices made. This homomorphism factors through the

Galois group of the algebraic closure of $k$ in C.
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If $Q$ is a minimal parabolic subgroup of $G_{k}$ containing $S$ , then its complexification

will be a parabolic subgroup of $G(C)$ containing $T$ , and we may as well choose $P$ to

be contained in $Q$ . Restriction of roots to $S$ determines a surjection $\rho_{\mathbb{C}/k}$ from $\Delta_{\mathbb{C}}$

to $\Delta_{k}\cup\{0\}$ . The anisotropic kernel is normally the isomorphism class of the Levi

component of a minimal k-rational parabolic subgroup, but I mean by it the set $\Delta_{\mathbb{C}/k}^{0}$ ,

which is $\rho_{\mathbb{C}/k}^{-1}(0)$ . The group $AutC/k$ takes this subset into its$e$lf, hence its complement.

The orbits in the complement are exactly the inverse images $\rho_{\mathbb{C}/k}^{-1}(\alpha)$ for $\alpha$ in $\Delta_{k}$ . For a

subset $\Theta\subseteq\triangle_{k}$ define $\epsilon_{\mathbb{C}/k}(\Theta)$ to be $\rho^{-1}(\Theta)\cup\{0\}$ .

Define $\Delta_{k,\pi}$ to be the those roots in $\Delta_{k}$ which are not orthogonal to the highest
weight of $\pi$ . It follows from a variant of Proposition1.7 that $\alpha$ lies in $\triangle_{k,\pi}$ if and only

if it is the restriction of a root $\alpha$ in $\Delta_{\mathbb{C}}$ which either lies in $\triangle c_{\pi}$ or is connected to
$\kappa_{\mathbb{C}/k}^{0}=\kappa(\Delta_{\mathbb{C}/k}^{0})$ by a single edge. I call the set of such roots in $\Delta_{\mathbb{C}}$ the extended $\Delta_{\mathbb{C},\pi}$ .

Suppose $k=$ R. The index is usually coded into a scheme for marking the com-
plex Dynkin diagram, black circles for elements of $\Delta_{\mathbb{C}/R}^{0}-which$ are the compact roots
–white for the complement, two white circles connected by a double ended arrow if
exchanged by complex conjugation. (See for example the pictures in [warner 1972: pp.
30-32].)

Define $\Delta_{\pi,\mathbb{C}}$ to be the inverse image in $\Delta_{\mathbb{C}}$ of $\triangle_{\pi,R}$ . By Propositionl.1 this is the

same as the complement in $\triangle c$ of the roots orthogonal to a highest weight vector of $\pi$ .

If $F$ corresponds to the $\pi$-saturated set $\Theta=\zeta\cup\kappa$ then the Galois index of $L_{F}$ is the

induced index on $\epsilon_{\mathbb{C}/R}(\zeta)$ .
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2. Compactifications of arithmetic quotients

Suppose now that $G$ is defined over Q. If $P$ is a minimal Q-rational parabolic subgroup,
$\Omega$ is a compact subset of $P$ , and $T>0$ , then the Siegel set associat$ed$ to this data is the
image of

C15 $(P, \Omega, T)=\Omega A_{\mathbb{Q}}^{++}(T)K$

in $X$ , where $A_{\mathbb{Q}}$ is the maximal Q-split torus contained in $P$ , stable under the Cartan
involution determined by $K$ , and

$A_{\mathbb{Q}}^{++}(T)=$ { $a\in A_{\mathbb{Q}}|\delta_{Q}(a)>T$ for all parabolic subgroups $Q$ containing $P$ }.

Here $\delta_{Q}$ is the modulus character of $Q$ . The main result of reduction theory is that the

arithmetic quotient $\Gamma\backslash X$ is covered by a finite number of Siegel sets (one in fact for each

of the finit $e$ set of $\Gamma$-conjugacy classes of minimal Q-rational parabolic subgroups).

2.1. Proposition. If 6 is a Siegel se $t$ in $X$ , then its clos$ure$ in $\overline{X}$ meetsjust $tl_{1}ose$ bound-
ary components met by the closu$re$ of $A_{\mathbb{Q}}^{++}(T)$ . More precisely, if we choose $P_{\emptyset,\mathbb{R}}$ to be a

minimal real parabolic subgroup contained in $P_{\mathbb{Q}}$ and obtain therefore a parametrization
of all real parabolic $su$ bgro $u$ps containing $P_{\emptyset,R}$ , then the boundary components met are

those corresponding to the subsets $\omega(\epsilon(\Theta))$ , where $\Theta$ is a $\pi$-saturated subset of $\Delta_{\mathbb{Q}}$ .

I call the Satake compactification geometrically rational if both of the following con-
ditions (GR1) and (GR2) hold:

(GR1) Each boundary component intersecting the closure of a Siegel set in $X$ has as

its stabilizer a Q-rational parabolic subgroup of $G$ .

Under these circumstances it is easy to see that, conversely, any boundary component

with Q-rational stabilizer meets the closure of some Siegel set. I will call these the ra-
tional boundary components.

(GR2) If $P$ is the stabilizer of a rational boundary component $X_{P}$ then the link group
$L_{P}$ is isogenous to the product of a rational group and a compact one.

When these conditions hold, define the space $X^{*}$ to be the union of all the rational

boundary components (including $X$ itself). The conditions guarantee exactly that each

of the rational boundary components is itself the symmetric space of some semi-simple

group defined over $Q$ (the group associated to $X_{P}$ will be the product of $G_{P}$ and a

compact factor). Assign to $X^{*}$ the topology defined by the condition that a set is open

if and only if its intersection with every Siegel set in every boundary component is open.
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It follows from the main result of [Satake $1960b$] combined with one of the main results

of [Borel 1962] that $\Gamma$ acts discretely on $X^{*}$ , with $\Gamma\backslash X^{*}$ compact and Hausdorff.

The obvious necessary and sufficient condition for (GR1) to hold is that for all $\pi-$

saturated subsets $\Theta$ of $\triangle_{\mathbb{Q}}$ , the subset $\epsilon_{\mathbb{C}/\mathbb{Q}}(\Theta)$ be $\pi$-saturated. Verifying this, however, is
unnecessarily complicated. Consider this condition with $\Theta=\emptyset$ . Since $\epsilon(\emptyset)$ is just $\Delta_{\mathbb{C}/\mathbb{Q}}^{0}$ ,
$\omega(\epsilon(\emptyset))$ is the union of $\Delta_{\mathbb{C}/\mathbb{Q}}^{0}$ and those roots outside $\triangle_{\mathbb{C}/\mathbb{Q}}^{0}$ which are not in $\Delta_{\mathbb{C},\pi}$ and

also not connected to $\kappa^{0}$ by a single edge. Therefore in order for the condition to hold

for $\emptyset$ it is necessary and sufficient that the set of roots in $\Delta_{\mathbb{C}/\mathbb{Q}}-\Delta_{\mathbb{C}/\mathbb{Q}}^{0}$ which are either

in $\Delta_{\mathbb{C},\pi}$ or connected to $\kappa_{\mathbb{C}/\mathbb{Q}}^{0}$ by a single edge be Galois-invariant. As mentioned before,

I call this last subset of $\Delta_{\mathbb{C}}$ the extended $\Delta_{\mathbb{C},\pi}$ . In fact this condition turns out to be

sufficient in general:

2.2. Proposition. Condition $(GRl)$ holds if and only $tl_{l}ec$omplement of the anisotropic
kernel $\Delta_{\mathbb{C}/\mathbb{Q}}^{0}$ in th $e$ extended $\Delta_{\mathbb{C},\pi}$ is Galois invariant.

If $G$ is quasi-split over $Q$ , then the anisotropic kernel is empty. In this case the compact-

ification is geometrically rational if and only if $\triangle c_{\pi}$ is Galois invariant.

Now assume that (GR1) holds. Consider condition (GR2) for the minimal parabolic

subgroup–i.e., again look at the simplest case where $\Theta=\emptyset$ . Then $G_{F}$ in this case has

Dynkin diagram equal to $\kappa^{0}$ . In order for (GR2) to hold, this must be Galois invariant up

to some compact factors. In other words: the Galois group will permute the connected

components of $\triangle_{\mathbb{C}/\mathbb{Q}}^{0}$ . Those connected components which possess an element of $\Delta_{\mathbb{C},\pi}$

make up $\kappa^{0}$ . Some of these may be transformed by the Galois group into some components

which are not in $\kappa^{0}$ . In order for (GR2) to hold, all of these last must comprise only

compact roots. Again, this turns out to be necessary and sufficient for the general validity

of (GR2):

2.3. Proposition. Assuming that $(GRl)$ holds, $tl_{1}en(GR2)$ holds if and only if the

Galois orbit of $\kappa(\Delta_{\mathbb{C}/\mathbb{Q}}^{0})$ is $con$ tained in the union of $\kappa(\triangle_{\mathbb{C}/\mathbb{Q}}^{0})$ and the subset of compact
roots.

This result may be applied easily to see that every Baily-Borel compactification is geo-
metrically rational. More generally it allows a proof which is straightforward (admittedly

not elegant) of this:

2.4. Proposition. If the Satake compactification $X\epsilon_{-\succ}\overline{X}$ has the proper$ty$ that for

every boundary component $X_{P}$ of the symmetric space $X$ the rank of $G_{P}$ is th$esame$ as
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that of its maximal compact $su$ bgroup, then it is geom$e$trically rational.

The real symmetric spaces with this property are list $ed$ at the end of $I$ . The hypothesis

is a bit odd in view of the fact that not all of the conjugacy classes of real boundary
components occur as rational boundary components. At any rate, it would be interesting
to construct in all these cases an interpretation of the structure of $X$ which allowed one to
prove this directly, in the style of the treatment of the Hermitian symmetric case in [Ash

et al. 1975]. When the group is absolutely simple over $Q$ the proof of this proposition
case by case is easy, since there are so few automorphisms of Dynkin diagrams. The case
when $G$ is obtained by restriction of ground field is not much more complicated.
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