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Parahoric subgroups and automorphic forms

伊吹山 知義 (Tomoyoshi Ibukiyama)

九州大学教養部 (College of Gen.Ed. Kyushu Univ.)

1 introduction

After Langlands and others, the theory of classical holomorphic auto-

morphic forms is, in a sense, a part of the representation theory of algebraic

groups. Of course, the representation theory is more essential and more

general than the classical theory. But, some part of the theory can be un-

derstood in classical language fairly completely. The theory of new forms

of Atkin-Lehner and others belonging to $\Gamma_{0}(p)$ is one such example.

Here, we treat one such theory, and give some general problems or con-

jecture on comparison of automorphic forms belonging to two different

algebraic groups and also give results in symplectic cases. This is a try

to generalize the classical theorem of Eichler and Shimizu, and some ap-

proach to a part of the Langlands conjecture.
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2 Problems or Conjectures

Let $G$ be a connected quasi-split reductive algebraic group over $Q$ whose

semi-simple part is simply connected, and $G’$ be an inner twist of $G$ . We

also assume that the symmetric domain attached to $G(R)$ is a bounded

symmetric domain $D$ , and that $G’$ (R)/center is either compact or attached

to bounded symmetric domain. We would like to compare the classical

automorphic forms on these two groups. We want to treat only those

forms belonging to minimal parahoric subgroup of each group. Now, we

explain this.

We fix a finite subset V of all places of $Q$ , and assume that, for any place

$v$ of $Q$ , we have $G_{v}\cong\sigma_{v}$ if and only if $v\not\in V$ , where $G_{v}=G(Q_{v})$ . For

each $v\not\in V$ , we fix some “standard “ open subgroup $U_{v}$ of $G_{v}\cong G_{v}’$ . (We

do not specify which one we should take as $U_{v}$ at this moment.It need not

be maximal.) For each $v\in V$ , we fix a minimal parahoric subgroup $B_{v}$ of

$G_{v}$ . Let $S_{v,aff}$ be the set of generators of affine Weyl group of $G_{v}$ . Then,

the set of all subgroups of $G_{v}$ which contains $B_{v}$ corresponds bijectively

to the set of all finite subsets of $S_{v,aff}$ . For each $\theta\subset^{-}S_{v,aff}$ , we denote by

$U_{\theta}$ the subgroup determined by this bijection. In the same way, for $G_{v}’$ ,

we define $S_{v,aff}’,$ $B_{v}’$ , and $U_{\theta}’$ . (When $G_{v}’$ is compact, we just take $G_{v}’$ as

$B’.)$ Now, put $S= \bigcup_{v\in V}S_{v,aff}$ and $S’= \bigcup_{v\in V}S_{v,aff}’$ . For each set $0\subseteq\neq S$ ,
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define an open subgroup $\mathcal{U}_{\Theta}$ of the adelization $G_{A}$ of $G$ by: . $-$

$\mathcal{U}_{\Theta}=G_{\infty}\cross\prod_{v\in V}U_{\Theta\cap S_{v,aff}}\cross\prod_{v\not\in V}U_{v}$

In the same way, we define subgroups $\mathcal{U}_{\Theta’}’$ of $G_{A}’$ for each $\Theta’\subset\mp S’$ . Here,

$\Theta$ or $\Theta’$ might be the empty set.

Since we shall treat everything classically, we review the definition of au-

tomorphic forms. For the sake of simplicity, we assume from now on that

the semisimple part of $G$ (and also of $G’$ when G’(R)/center is not com-

pact) satisfies the strong approximation theorem. (This assumption is,

in a sense, superfluous, but the definition of automorphic forms becomes

slightly more complicated without this assumption.) We fix a represen-

tation $\chi$ of the connected component of the maximal compact subgroup

of the semi-simple part of $G(R)$ . Denote by $G^{0}(R)$ the connected compo-

nent of the semisimple part of $G(R)$ (as the real Lie group), and denote

by $J(g, Z)(g\in D, Z\in D)$ the canonical automorphic factor attached to

$G^{0}(R)$ . We put $\Gamma_{\Theta}=(G(Q)\cap \mathcal{U}_{\Theta})\cap G^{0}(R)$ . Then the space $S_{\chi}(\mathcal{U}_{\Theta})$ of

cusp forms belonging to $\mathcal{U}_{\Theta}$ is defined to be the set of those holomorphic

functions $f$ on $D$ such that

$f(\gamma(Z))=\chi(J(\gamma, Z))f(Z)$ for all $\gamma\in\Gamma_{\Theta}$

and that $f$ vanishes on each boundary of the Satake-Baily-Borel compact-

ification. When $G’(R)$ is compact modulo center, then we take a repre-
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sentation $(\chi’, V_{\chi’})$ of $G’(R)$ and the space $S_{\chi’}(\mathcal{U}_{\Theta}’)$ of automorphic forms

on $G_{A}’$ is defined as usual (cf. [1]) by:

$S_{\chi}(\mathcal{U}_{\Theta}’)=\{f$ : $G_{A}’arrow V_{\chi’}$ ; $f(agu)=\chi’(u_{\infty})f(g)$

for any $g\in G_{A}’$ , $u\in \mathcal{U}_{\Theta’}’$ , and $a\in G(Q)$ }

where $u_{\infty}$ is the component of $u$ in $G_{\infty}$ . When $C(R)$ modulo center is not

compact, the definition of the cusp forms are as before.

Conjecture 1. For good choice of $\chi$ and $\chi’$ , the following relation be-

tween dimensions should hold:

$\dim\sum_{\Theta\subset S}(-1)^{\#(\Theta)}S_{\chi}(\mathcal{U}_{\Theta})=\dim\sum_{\Theta’\subset S’}(-1)^{\#(\Theta’)}S_{\chi’}(\mathcal{U}_{\Theta’})$

$\mp$ 千

This is a natural problem to generalize classical results of Eichler on

GL(2) and Shimizu on the product of GL(2).

Theorem( Hashimoto and Ibukiyama [2]) Put $G=GSp(2, Q)$ (size 4)

and $G’=$ the group of similitudes of positive definite binary quaternion

hermitian forms on $B^{2}(B$ : the difinite quaternion algebra with prime dis-

criminant p). Take as $\chi$ , or $\chi’$ , the representation which corresponds to

the young diagram parametrization (k,k), or (k-3,k-3), respectively. For
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$v\neq p$ , put $U_{v}=GSp(2, Z_{p})$ . Then for each prime $p\neq 3$ , and each $k\geq 5$ ,

Conjecture 1 is true.

We did not checked the case $p=3$ , just because calculation is compli-

cated in that case. The results should be true also in this case. As for the

weights less than 5, there exists a problem on the convergence of the trace

formula, and the same argument in the above paper does not work.

To explain the meaning of the above equality, we need the difini-

tion of new forms. We denote by $S_{\chi}^{0}(\mathcal{U}_{l})$ the subspace of $S_{\chi}(\mathcal{U}_{\emptyset})$ which

is orthogonal (with respect to the usual invariant hermitian metric) to

$\Sigma_{\Theta\subset S,\#(\Theta)=1}S_{\chi}(\mathcal{U}_{\Theta})$ . The space $S_{\chi}^{0}(\mathcal{U}_{\emptyset})$ is defined in the same way. We

call elements of $S_{\chi}^{0}(\mathcal{U}_{\emptyset})$ or $S_{\chi}^{0},(\mathcal{U}_{l}’)$ new forms. In other words, $f$ is a new

form if and only if all the local representation $\pi_{v}(v\in V)$ attached to $f$ is

the Steinberg representation.

Conjecture 2. $S_{\chi}^{0}(\mathcal{U}_{\emptyset})\cong S_{\chi}^{0},(\mathcal{U}_{\emptyset}’)$ as $\mathcal{H}$-modules, where $\mathcal{H}=\otimes_{v\not\in V}\mathcal{H}(G_{v}, U_{v})$

and $\mathcal{H}(G_{v}, U_{v})$ are the usual ( $U_{v}- bi$-invariant) Hecke algebras.
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As for symplectic case, we have some numerical examples for rank 2

case. ([6]). For some groups of type $A_{2}$ of Q-rank 1, Koseki proved Con-

jecture 2 (, and hence also Conjecture 1) under some conditions on V and

$U_{v}(v\not\in V)$ .

Our method to approach to these problems is the trace formula. Since

our approach is classical, this trace formula for $G$ is the (generalization of)

Godement’s dimension formula in Cartan Seminar, and it is a summation

of each conjugacy class of elements of $G(Q)$ . Now, we assume that $G’(R)$

modulo center is compact. Then, any element of $G’(Q)$ is semi-simple,

and taking the Langlands conjecture on stable conjugacy classes into ac-

count, any contribution of quasi-unipotent elements of $G(Q)$ to $\dim S_{\chi}^{0}(\mathcal{U}_{\emptyset})$

should vanish. (We would like to emphasize that the contribution of quasi-

unipotent elements to each $S_{\chi}(\mathcal{U}_{\Theta})$ does not vanish in general. Only after

taking the alternating sum, it should vanish.)

Conjecture 3: The contribution of central quasi-unipotent elements to

$\dim S_{\chi}^{0}(\mathcal{U}_{\emptyset})$ should vanish.

Theorem: As for central unipotent elements, this is true (for example)
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for $G=$ Sp(n,Q) for general $n$ . $[5]$

3 central quasi unipotent elements

From now on, we shall give some general program to solve Conjecture

3. The problem is on $G$ and we forget about $G’$ . From now on, we assume

that $G$ is a quasi-split semi-simple algebraic group over $Q$ which is Q-

simple and simply connected and that $G(R)$ is associated with bounded

symmetric domain. We denote by $P_{r}(r=1\ldots s)$ the representatives of

conjugacy classes of maximal Q-parabolic subgoups of G. We denote by

$U_{r}$ the Q-valued points of the center of the unipotent radical of $P_{r}$ . As we

assumed that $G(R)$ corresponds to bounded symmetric domain, we can

assume that

$U_{1}\subset U_{2}\subset\cdots\subset U_{s}$

We say that an element $\gamma$ of $G(Q)$ is quasi-unipotent, if some power of $\gamma$ is

unipotent. We say that quasi-unipotent element $\gamma$ is central, if unipotent

part $\gamma_{u}$ of $\gamma$ (in the Jordan decomposition) is conjugate to some elements

of $U_{r}$ for some $r$ . Now, we define rank of quasi-unipotent elements $\gamma\in$

$G(Q)$ . For any such $\gamma$ , we put

rank$( \gamma)=\min$ { $r$ ; some $G(Q)$-conjugate of $\gamma_{u}$ is in $U_{r}$ }

7
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Denote by $C^{qu,r}$ (resp.) $C^{u,r}$ the set of central quasi-unipotent (resp.

unipotent) elements of $G(Q)$ of rank $r$ . For any $\Theta\subset S$ and any sub-

set $C$ of $\Gamma_{\Theta}$ , we denote by $I(C, \Theta)$ the following integral:

$I(C, \Theta)=\int_{\Gamma_{\Theta}\backslash G^{0}(R)}\sum_{\gamma\in C}\chi(J(g^{-1}\gamma g, 0))dg$

where $0$ is the “origin” of the bounded domain D. This may be called

the contribution of $C$ to the dimension. Unfortunately, it is not known

in general whether $I(C^{qu,r}\cap\Gamma_{\Theta}, \Theta)$ converges. The convergence of the

Godement’s formula (that is, the convergence of the integral expression

$I(\Gamma_{\Theta}, \Theta))$ is easily obtained for generic $\chi$ . But, $I(C^{qu,r}\cap\Gamma_{\Theta})$ is a part of

whole integral and there is no a priori reason that this converges. Shintani

proved that $I(C^{u,r}\cap\Gamma_{\Theta})$ converges for $G=Sp(n, Q)$ (when $\chi$ is $\det^{k}$ with

$k\geq 5)$ by very subtle argument on prehomogeneous vector space, and also

several other examples are known e.g. by Arakawa. Now, we assume that

$I(C^{qu,r}\cap\Gamma_{\Theta})$ converges.

Then, the problem becomes an arithmetic one. We treat this in the next

section.

4 combinatorial theory

We fix $\Theta\subset S*$ for a while, and denote $\Gamma_{\Theta}$ simply by F. First, we de-

compose $C^{qu,r}$ into the part which corresponds with cusps. We decompose
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$G(Q)$ into the following finitely many double cosets:

$G(Q)= \prod_{w}\Gamma wP_{r}$ disjoint

The cusps of $\Gamma$ with respect to $P_{r}(Q)$ corresponds bijectively to the above

double cosets. Further, for each representative $w$ of cusps, we put

$D^{qu,r}(w)=\{\gamma\in\Gamma\cap wP_{r}(Q)w^{-}\cap C^{qu,r};w^{-1}\gamma_{u}w\in U_{r}\}$

and

$C^{qu,r}(w)=\{\delta^{-1}\gamma\delta;\gamma\in D^{qu,r}(w), \delta\in\Gamma\}$

Then, under a certain condition that any rank $r$ unipotent element of $U_{r}$

is, in a sense, “generic” in $U_{r}$ (, which seems always true judging from

various examples), we have the following decomposition:

$C^{qu,r} \cap\Gamma=\prod_{w}C^{qu,r}(w)$ disjoint

where $w$ runs over all the representatives of the cusps. So, it is enough

to calculate $I(C^{qu,r}(w), \Theta)$ instead of $I(C^{qu,r}\cap\Gamma, \Theta)$ (of course under the

assumption on convergence). Under the same condition as above, this in-

tegral depends only on $w^{-1}\Gamma w\cap P_{r}(Q)$ . Hence, the conjecture is essentially

reduces to the following problem.

Problem: We fix $r$ and $P_{r}$ . The set of pairs $(\Theta, w)$ (where $\Theta$

辛
$S$

and $w$ are the representatives of the cusps of $\Gamma_{\Theta}$ with respect to $P_{r}$ ) is
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decomposed into the disjoint union of the sets each of which consists of

two elements $(\Theta_{1}, w_{1})$ and $(\Theta_{2}, w_{2})$ such that $w_{1}^{-1}\Gamma_{\Theta_{1}}w_{1}\cap P_{r}(Q)$ is $P_{r}(Q)-$

conjugate to $w_{2}^{-1}\Gamma_{\Theta_{1}}w_{2}\cap P_{r}(Q)$ and that $\#(\Theta_{1})=\#(\Theta_{2})+1$ ?

Now, we assume that $G_{v}(Q_{v})=U_{v}P_{r}(Q_{v})$ for any $r$ and any $v\not\in V$ , and

that $G_{A}=G(Q)\mathcal{U}_{\Theta}$ for all $\Theta\subset\neq S$ . Then, the above problem reduces to

the local problem. More precisely, fix $v\in V$ . Put

$T_{\theta}=U_{\theta}\backslash G_{v}/P_{r}(Q_{v})$ and

$T=$ $\prod$ $T_{\theta}$

$\theta \text{キ^{}s_{v,aff}}$

Local Problem : Does there exist a permutation $\iota$ of $T$ of order two such

that the following two conditions (i) and (ii) are satisfied?

(i) If $c\in T_{\theta}$ and $\iota(c)\in T_{\sigma}$ , then $\#(\theta)=\#(\sigma)+1$ .

(ii) Notations being as in (i), for any representative $g$ (resp. h) in $G_{v}$

of $c$ (resp. $\iota(c)$ ), the group $g^{-1}U_{\theta}g\cap P_{r}(Q_{v})$ is $P_{r}(Q_{v})$ -conjuugate to

$h^{-1}U_{\sigma}h\cap P_{r}(Q_{v})$ .

This local problem can be solved affirmatively for various groups of

type $A_{n}$ or $C_{n}$ , containing usual split symplectic groups. By the way, as

a by-product to the solution of the above problem, we get a simultaneous
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description of explicit configurations of cusps of various $\Gamma_{\Theta}$ in the split

symplectic case (cf. [5]).

As for more complete references, please see the references in the papers

quoted below.
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