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Nonlinear eddies and waves in planetary fluids

九大 応力研 山形俊男 (Toshio Yamagata)

1. Introduction
In recent years a concept of nonlinear Rossby modes has received much

attention pursuant to an explanation of the longevity of various coherent
structures in planetary fluids such as atmospheric blocks, Jovian eddies, various
ocean eddies and the Kuroshio steady meander. The concept $itse^{\sigma}\dot{1}f$ is not new
and can be traced back to Scott-Russell’s discovery of solitary water waves
more than 150 years ago. The recent progress in planetary fluid dynamics,
however, enriched the classical field and catalogued several important coherent
structures with possible applications even in other fields such as plasma physics.
Those are, for example, planetary solitary waves (cf. MALANOTTE-
RIZZOLI, 1982), modons (STERN, 1975; LARICHEV and REZNIK, 1976;
FLIERL et al., 1980; MCWILLIAMS, 1980) and IG eddies (cf. WILLIAMS
and YAMAGATA, 1985). One important property to be noted here is that the
nonlinear modes are distinct from finite amplitude planetary waves in a sense
that they have no linear counterparts.

When we are interested in their life cycle, forcing and dissipation of the
potential vorticity $q$ become very important. This is because $q$ plays a
fundamental role for those planetary structures (cf. HOSKINS et a1.,1985;
RHINES, 1986). In particular, it is very important to clarify how $q$ is imparted
to the fluid when generation of the nonlinear coherent structures is concerned.
There are several ways to impart $q$ to planetary fluids Those are wind stresses,

weak frictional or eddy-driven stresses, mass $and/or$ buoyancy fluxes,
interactions with rotating planets (the $\uparrow|Jebar^{\prime t}$ effect), etc.

Recently, YAMAGATA and UMATANI (1987) discussed the problem of
the bimodal behavior of the Kuroshio path, south of Japan by use of the
$Korte_{\backslash }weg$-de Vries equation with forcing and dissipation of the potential
$vortic_{1}Yy$ . They showed that a localized, large meander with a shape of a
solitary wave may be produced by coastal step-like geometry when the upstream
current is faster than the long Rossby wave speed. Even if the forcing due to
the geometry torque is weak, the dynamical system has a chance to jump from a
small meander state to the large meander state by capturing a large disturbance.
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This is due to the existence of multiple equlibria under the supercritical
condition. They demonstrated subsequently using the QG equation that the
model Kuroshio can actually take a localized, large meander path as a result of
direct interaction between the current and the step-like coastal geometry
(YAMAGATA and UMATANI, 1989). They also found that the cyclonic eddy
associated with the large meander is in the “almost-free“ limit of the nonlinear
QG equation.

The above work prompted us to slightly extend the idea on locally-induced
nonlinear modes and multiple equilibria by considering Modons and IG eddies.
In the present article we first show how modons are excited by a continuous
supply of the potential vorticity. We then proceed to excitation of IG vortices
by either a continuous source of mass or potential vorticity together with some
comments on the recent experiment by DAVEY and KILLWORTH (1989).

The final section gives a brief summary of the present work.

2. Evolution ofModons
We consider the barotropic quasi-geostrophic equation in the presence of

forcing of relative vorticity $\zeta_{b}$ with a time constant $\lambda_{1^{-1}}$ and Ekman-type
dissipation with a time constant $\lambda_{2^{-1}}$ Then the equation may be written

$\zeta_{t}+J(\psi, \zeta)+\beta_{\psi_{X}=\lambda_{1}}\zeta_{b^{-\lambda_{2}}}\zeta$ , (2.1)

where J(a,b) $=a_{X}b_{y}- a_{y}b_{x},$ $\psi(x,y)$ is the geostrophic streamfuction, $\zeta(=\Delta\psi)$ is
the relative vorticity and $\beta$ denotes the meridional gradient of the the Coriolis
parameter $f$ at its mean value $f_{0}$ . It is now well-known that the homogeneous
form of (2.1) has the exact solution called Stem’s stationary modon, which takes
the forn

$\psi b=- U\sin\Theta$ {r-R $J_{1(r(\beta/U)^{1/2})/J_{1(R(\beta/U)^{1/2})\}}}$ for $0<r<R$
and

$=0$ elsewhere, (2.2)

where $r^{2}=x^{2}+y^{2}$ and $e=\tan^{-1}[y/x],$ $R$ is the modon radius, $J_{n}$ is the n-th order
Bessel function of the first kind and $U$ satisfies the condition $J_{2(R(\beta/U)^{1/2})=}0$

(hereafter we adopt the lowest zero point that satisfies $R(\beta/U)^{1/2}=5.136\ldots$ ).
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We adopt the relative vorticity associated with the Stem’s modon as the forcing
$\zeta_{b}$ . Therefore

$\zeta_{b}=-\beta R\sin 6J_{1(r(\beta/U)^{1/2})/J_{1(R(\beta/U)^{1/2}}}$ . (2.3)

In the present section we discuss two cases, distinguished by relative
importance between forcing and dissipation.

$a$ . Forcing Balanced with Dissipation $(\lambda_{l}=\lambda_{2})$

Here we consider the case in which forcing is balanced with dissipation (cf.

PIERREHUMBERT and MALGUZZI, 1984). Equation (2.1) may be written
with using the same time constant $\lambda$

$\zeta_{t}+J(\psi, \zeta)+\beta\psi_{x}=\lambda(\zeta_{b}-\zeta)$ , (2.4)

Since we adopt (2.3) as the forcing $\zeta_{b},$ $\zeta=\zeta_{b}(\psi=\psi b)$ is one steady solution of
(2.4). Under weak forcing and dissipation, i.e. for $\lambda$ small, however, we might
have a case in which the advection of relative vorticity can be neglected at the
lowest order of approximation. The steady , linear version of (2.1) is then

$\lambda\Delta\psi+\beta\psi_{x}=\lambda\zeta_{b}$. (2.5)

Equation (2.5) is quite well-known in physical oceanography (cf. STOMMEL,
1948). By replacing the right hand side with two-dimensional Dirac 6-function
$6(x)6(y)$, the Green’s function of (2.5) is easily obtained as

$G=-(2\pi)^{-1}e^{-(\beta/2\lambda)x}K_{0}((\beta/2\lambda)r)$, (2.6)

where $K_{0}$ is the modified Bessel function of the second kind of order zero.
The co plete soulution is fornally written as

$\psi=\lambda\int G(x- x^{*},y- y^{*})\zeta_{b}(x^{*},y^{*})dx^{*}dy^{*}$ . (2.7)
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There are two remarkable features of the linear solution. Firstly, the
magnitude of the solution is proportional to that of forcing. Secondly, it is
asymmetric in the zonal direction. The second feature is clearly seen in the
asymptotic fonn of $G$ (YAMAGATA, 1976; RHINES 1983). As $r>>2V\beta$, it
follows that

$G\approx-(4\pi r\beta/\lambda)^{-1/2}e^{-(\beta/2\lambda)r(1+\cos\Theta)}$ . (2.8)

Currents decay algebraically to the west of the forcing but decay exponentially
within the Stommel boundary layer of order $\lambda/\beta$ in any other direction.

In order to check the above possibility of multiple steady states, we
integrated Eq. (2.4) using ARAKAWA $(1966)’s$ formulation for the Jacobian
teml with a leapfrog scheme (cf. YAMAGATA and UMATANI, 1989). The
model ocean is $a$ channel (2000 km $\cross 1000$ km) with $a$ cyclic condition in the
zonal direction. The grid spacings are $\Delta x=\Delta y=10$ km. Since $R$ is assumed to
be 150 km, the number of grid spacings per a modon diameter is 30. This
number gives a reasonable resolution of the modon structure (cf.

MCWILLIAMS et al., 1981). The parameter $\beta(=1.92\cross 10^{-11}cm^{-1}s^{-1})$ is
evaluated at a reference latitude of 33 oN.

The results are summarized in Figure 1, where the normalized maximum
magnitude of $\zeta$ for realized steady states is shown as a function of $\lambda$ . It is seen
that the distinct high and low amplitude states exist when $\lambda$ is smaller than $0.3\cross$

$10^{-1}/day$ . The criterion may be interpreted in the following way. Since the
mean square vorticity of quasi-geostrophic Stem’s modon is $\beta^{2}R^{2}/2$ (cf.
STERN,1975), the time for a particle to circulate about the eddy once will be
given by $2\pi\sqrt{2}/(\beta R)$, which corresponds to about 36 days in the present model.
If a time scale $(\lambda^{-1})$ of forcing the modon is less than the characteristic time
scale given above, a fully nonlinear solution will be excited. The magnitude of
thi$s$ high amplitude state is now independent of $\lambda$, whereas the magnitude of the
low amplitude state increases almost linearly with increasing $\lambda$ for a sufficiently
small $\lambda$ . It should be noted that Figure 1 resembles Figure 2 of YAMAGATA
and UMATANI (1987), in which excitation of a planetary shear soliton was
discussed as a conceptual model of the Kuroshio large meander. This suggests
the existence of a generalized theory for the present type of problems*.

*The simplest example will be a swing with a thrust against friction. If the thrust exceeds a
certain critical magnitude, the swing will begin to rotate around the axis. Once it rotates, a weak
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Figure 2 shows streamfunctions for the two distinct states for $\lambda=0.1\cross 10^{-1}$

$/day$. The linear solution shows a remarkable east-west asymmetry as expected
from the linear theory.

$b$. Inviscid Response versus Viscous Response
In general characteristic time of forcing the nonlinear structure is not

always equal to that of dissipation. One typical example is an inviscid problem
$(\lambda_{2}=0)$ , for which a steady response is not realizable any longer. Figures 3
and 4 demonstrate how such an inviscid system evolves from the initial
condition of no motion. It is seen that the inviscid model sheds modons
propagating eastward intermittently for $\lambda_{1}=0.2\cross 10^{-1}/day$ (Figure 3). A
similar phenomenon is also observed for $\lambda_{1}=0.1\cross 10^{-1}/day$ (not shown). For
even smaller value of $\lambda_{1}$ such as $\lambda_{1}=0.5\cross 10^{-2}/day$ , however, only the low
amplitude disturbance spreads west of the forcing as a long Rossby wave
(Figure 4). Those experiments show that there exists a critical magnitude of
forcing which divides the response between the low amplitude state consisting of
long Rossby waves propagating westward and the high amplitude state
consisting of shed modons which propagate eastward.

Increasing the dissipation rate $\lambda_{2}$ leads to suppression of the above $s$hedding
process as demonstrated in Figure 7, in which various streamfunction pattems
at day 300 are shown for $\lambda_{1}=0.2\cross 10^{-1}/day$ and $\lambda_{2}$ from zero through $0.2\cross$

$10^{-1}/day$ . Another noticeable effect of dissipation is obviously the reduction of
eddy amplitude.

3. Evolution of $IG$ Eddies
Quite recently, UMATANI and YAMAGATA (1989) have demonstrated,

using the eddy-resolving limited area OGCM, that the warn nonlinear ocean
eddies are excited off Costa Rica by strong nonhers in winter. Those eddies not
only resemble observed ones but also appear to be govemed by the singular
dynamical process–IG dynamics–as anticipated by MATSUURA and
YAMAGATA (1982) using a one-layer reduced gravity model. In particular,
$UMAX^{ANI}$ and YAMAGATA (1989) have suggested that those nonlinear
coherent structures may be successively generated under the steady supply of

thrust may keep it going. The same weak thrust may also excite an ordinary oscillation from a
state of no motion. Therefore two states may exist under the same weak forcing.
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potential vorticity from the atmo$s$phere. We will discu$ss$ this problem in the
present section.

For the present purpose we adopt a one-layer reduced gravity model with a
rigid lid. It is well-known that the shallow water equations work well when the
active layer is confined within the upper part of the ocean by a $s$teep
thennocline. Let $L,$ $L/(\beta LR^{2}),$ $V$ and $g^{*- 1}f_{0}VL$ denote scale factors for
horizontal coordinates $(x, y)$ , time $t$ , velocity $(u, v)$ and interface depression $\eta$

from the mean depth $H$ , where $L_{R}=C_{g}/f_{0}$ is the defornation radiu$s$ and $C_{g}($

$=\sqrt{g^{*}H)}$ the intemal long-wave speed. Then, introducing three nondimensional
parameters $\beta^{*}$ ($=\beta L/f_{0:}$ beta parameter), $\epsilon^{*}$ ($=V/(f_{0}L)$ : Rossby number) and
$s^{*}$ ($=L_{R^{2}/L^{2}:}$ stratification parameter), we have

$\beta^{*}s^{*}\frac{Du}{Dt}-(1+\beta^{*}y)v=-\eta_{X}$ ,

$\beta^{*}s^{*}\frac{Dv}{Dt}-(1+\beta^{*}y)u=-\eta_{y}$ ,

$\beta^{*}\frac{D\eta}{Dt}+(1+\neg^{*}u_{X}+v_{y})=0s\eta\epsilon_{*}$

$\frac{D()}{Dt}\equiv()_{t}+\neg_{S^{*}}^{*}*u(\beta^{\epsilon})_{X}+v()_{y}]$ . (3.1)

To derive the IG equation from the shallow water equations, we need to
introduce the following relations among the three parameters:

$\beta^{*}<<O(1),$ $\epsilon^{*}=E\beta^{*2},$ $s^{*}=S\beta^{*}$ , (3.2)

where $E$ and $S$ are numbers of $O(1)$ (cf. YAMAGATA, 1982: WLLIAMS and
YAMAGATA, 1985). Then we find

$\eta_{t}-\eta_{x}-\beta^{*}(ES^{-1}\eta\eta_{x}+S\Delta\eta_{x}- 2y\eta_{x}- EJ(\Delta\eta,\eta))=W$ , (3.3)

where $W$ is the forcing due to either direct mass source or Ekman pumping of
the wind stress. A remarkable property of the above IG equation is that only
anticyclonic eddies are long-lived due to the balance between the scalar
nonlinearity and the planetary dispersion.

DAVEY and KILLWORTH (1989) have recently shown using a shallow
water system that a sufficiently strong constant mass source generates a chain of
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discrete anticyclonic eddies. LINDEN (1989, personal communication) also
reported a similar phenomenon observed in laboratory experiments with the
planetary $\beta$ -effect. According to DAVEY and KILLWORTH (1989), a
necessary condition for successive fonnation of eddies can be reduced to

$\epsilon^{*}>>\beta^{*2}s^{*}$ . (3.4)

It is immediately seen that the condition (3.1) for the IG dynamics certainly
satisfies the above inequality, Furthermore, the three nondimensional
parameters in their experiment$s$ suggest that the anticyclonic eddie $s$ may
actually be dominated by the IG dynamics.

Therefore we report here some results using Eq. (3.2) with the forcing
$s$ imilar to the one adopted by DAVEY and KILLWORTH (1989). The forcing
function $W$ is then

$\frac{1}{2}[1+\cos(\pi r/r_{0})]$ , $r<r_{0}$

$W=${ (3.5)

0. $r>r_{0}$

The parameter $\beta^{*}$ is assumed to be 0.13 (corresponding to the Costa Rica
eddies) with $E=S=1$ and $r\circ=1$ in our experiment. The method to solve
the forced IG equation is exactly the $s$ame with the one adopted in
MATSUURA and YAMAGATA (1982). The evolution of $\eta$ shows
clearly how the anticyclonic IG eddies are $s$hed west of the forcing
(Figure 5). As expected, this sequence is quite similar to Figure 9 of
DAVEY and KILLWORTH (1989). Changing the sign of the forcing (a
sink of mass), however, leads to a totally different result as shown in
Figure 5, in which long Rossby waves excited by the sink propagate
westward.

If the nondimensional amplitude of the forcing (which is equivalent to
a $feC1\alpha_{E_{o}^{roca1}}$ of forcing time scale) is reduced by a factor of $\beta^{*}$ , the
solution becomes rather linear so that changing the sign of the forcing
does not affect the response except for the sign of $\eta$ (not shown). In other
words, the nonlinear IG eddies cannot be excited for such a weak forcing.
This is quite reasonable since the nondimensional time for a particle to
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circulate about the quasi-geostrophic eddy is $O(\beta^{*-1})$ as shown for the
Stem’s modon in the previous section.

4. Summary
We have shown that nonlinear Rossby modes (modons and IG eddies as

examples) can be excited by a sufficiently strong constant forcing of potential
vorticity. In the case of IG eddies the forcing must be a positive one. When the
time scale of forcing the nonlinear modes is equal to that of dissipation, two
(linear and nonlinear) equilibrium states can be produced, depending on the
initial condition, for a sufficiently weak forcing. This has been demonstrated
for the Stem’s modon in the present paper.

When the system is inviscid, a sufficiently strong, steady forcing may
generate a sequence of propagating nonlinear coherent structures. One typical
example seems to be provided by the successive fornation of waml eddies off
Costa Rica as demonstrated by UMATANI and YAMAGATA (1989). A weak
forcing, however, generates linear long Rossby waves which propagate
westward. Thi$s$ is generally believed to occur in tropical oceans.

The criterion which divides the high amplitude (nonlinear) state and the low
amplitude (linear) state may be interpreted in terms of a simple measure, which
is a ratio of a time scale of forcing the nonlinear structure to a time for a
particle to circulate about the nonlinear eddy once. If the ratio exceeds unity, a
linear Rossby wave response will be dominant. If the ratio is smaller than
unity, nonlinear Rossby modes will be excited. The latter means a strong kick
to the planetary fluid.

A $s$ imple concept developed here may be generalized to any forced
nonlinear evolution equation with a nonlinear coherent structure as a free
solution. One way to excite such structures extemally is to apply a sufficiently
strong forcing to a fluid as SCO$T\Gamma$-RUSSEL (1844) described: “,when the boat
suddenly stopped–not so the mass of water in the channel which it had put into
motion; it accumulated round the prow of the vessel in a state of violent
agitation, then suddenly leaving it behind, rolled downward with great velocity,
assuming the forn of a large solitary elevation...“
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Figure 1. Normalized magnirude of maximum $\zeta$ for the final steady state as a function of $\lambda_{\vee}$

Figure 2. Srreamfunction patterns for rwo distinct states for $\lambda=0.1x10^{-1}/day$ $(a)$ Higb

amplirude state of $S\iota er\mathfrak{n}s$ modon. (b) Low amplitude sta$te$ of damped long Rossby

waves. The stippled areas represent negative values. The contour interval is 1.025 $x$

$10^{7}cm^{2}/s$ . which corresponds to one fiifth of the maximum value of $\psi b$.
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$*$
$rightarrow$

Figure 3. Evolution of strcamfuction patterns for $\lambda_{1}=0.2x10^{- 1}/day$ and $\lambda_{2}=0$ . Figure 4. As in Figure 3 but for $\lambda_{1}=0.5x10^{- 2}/day$ .
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Figure 5. Evolution of the interface depression $\eta$ . The forcing function is given by (3.5) in the

text. (a) A case with positive forcing. (b) A case with negative forcing. The stipplcd
areas represent negative valucs. The contour intervd is 0.15.
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