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§0. Introduction

In this paper the authors show the integral representation of

{(3)= 2 n~3. Namely [(3) is represented by the Mellin

n=1

transformation of a modular form relative to Fl(ﬁ). our result isl
based on the theory developed by Apéry [Al, Beukers [Bll and others.
In 1978 Apery introduced'his sequences {an}, {bn}. Those

sequences satisfy the recurrence relation
3 3 3 2

nu ¢+ (n-1) U o = (34n"-51n +27n-—5)un_1 (0-1)
with initial conditions ao= 1, a1=5 and b0=0, b1=6. And he showed
the irrationality of {(3) by the approximation
. bn
lim;—= {(3). (%)
n-o n .

Beukers—-Peters{B-P] studied the generating functions A(t) = p> antn,

B(t) = Z bntn for these sequences. As easily shown those two
functions satisfy the following Fuchsian type differential equation
with singularities t = 0, A = (1-/2)%, 1= (1+v2)?, =;

D: L(y)

0, (0-2)

L({y> 6, A (0-3)

respectively, where L indicates the differential operator

L=<t4—34t3+t2)(%;)3+(6t3—153t2+3t>(%;>2+(7t2—112t+1)%T+<t-5). (0-4)

As Peters[P] pointed out the differential equation (0-2) is closely

related with the Picard-Fuchs equation

dzz
d52
for the modular family of elliptic curves

?6: y2+ (l+s)xy - (sz—s)y = x3— (sz-s)x2

Dg: s(s-1)(9s-DEZ + (275%-205+1)92 + (95-3)z = 0

6

relative to a congruence subgroup of I' = SL(2,Z):

a b
F1(6) = €SL(2,Z2): a

c d
So we proceed our study as the following way

1, ¢ = 0 (mod 6)}
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(1) We construct the solutions w(s), a(s) of D6 using a modular form
w(t) of weight 1 and the uniformizing function s=s(t) relative to
r (6>, where t is a variable on H= {t € C : Im T > 0}.

(2) We show the exact cnnection between D and D and describe A(t)

6°
and B(t)in terms of w(s),a(s). During this procedure we find the
relation t = s(9s-1)/(s-1) between the two variables t and s.
(3) We observe the behavior of A(t) and B(t) around t=A. Then we can
find a linear combination of A(t) and B(t)

d(t) = C A(t) + B(t)
with trivial monodromy around t=A (the coefficient C is given by

(4-3)). Hence d(t) is single valued holomorphic on {teC : |t|< A'}.

By this property we can deduce

Pn
C + — _— 0 (n — o),
a
n
by virtue of Apery's relation (x) it indicates the equality

g cC + [(3) = 0.
If we write down the coefficient ¢, we obtain the representation

of {(3).

§1. Statement of the result
At first we have the properties of Fl(ﬁ):

(i) [F:Fl(ﬁ)] = 24,

(ii) the quatient space H/Fl(ﬁ) has 4 cusp points thier
representatives are given by t = 0, 1/3, 1/2, =,

o

(iii) the genus of H/Fl(ﬁ) , the compactification of H/Fl(ﬁ), is

equal to O,

(iv) the fundamental domain of Fl(ﬁ) is pictured in fig.l.
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According to the result of Klein (see [K]1 p.391) we can take

J,(0,3t) Y4 :
s(t)= { 52?6—;7— s, Where 02 denotes the Jacobi's theta function, as
2 ’

the uniformizing function of Fl(ﬁ) (namely s(t) is the generator of
the field M(H/FI(G)) of meromorphic modular functions relative to

Fl(ﬁ)). Using the infinite product expression of 02:

«©

m -
¥,0,7) = 2 o TT a-d™ TT a+q™?2 . (q = &2FLT,
n=1 n=1

we obtain the g-expansion of s(t):

s(T)= q - 4g2+ 10q3- 20q%+-+-+  (q=e?TET,, (1-1)

Using the transformation formula for 02 we obtain

s(») = 0
(1-2) s(0) = 1/9
s(1/3) =1
s(1/2) = o
Next let G N. k z(t) denote an Eisenstein series of level N and
dimension -k, where K is a positive integer and 3 is an element of
Zz, namely
1
G >(t) = 2 for k 2 3.
N,k,a = -> k =
(ml,mz)_ a (mod.N) (mlr + mz)
It is known that G6 1 g(t) can be defined and is a modular form
of weight 1 for I'(6) (see [S] chap. VII). If we make the linear
; 5 .
combination X2 G6 1 (t), then we can show that it is a modular
. k=0 ’ ’(1,k)
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fofm of weight 1 for rlcs) with the only zero at t= 1/2 (cf.[S]). We

set

5
-3 e 1_am—an2_ a3 _a 4 o 6_ . T _
2nik§OG6,1,(1,k) = 1-3q-39°-3q"-3q "-3q -6q (1-3)

Now we can state our result.

w(t)=

Proposition.
| It holds

2 4

, iw
L(3) = -3 (2ni)° f $(9s2-18s+1) (9s-1)t0? dr.
0 .

§2. The solution of the modular differential equation.

In this section we perform the process (1) in the introduction.
Set a(t)= Ttw(t). We can consider w and 5 as multivalued function on
the s-space via the mapping Tt - s(f). We denote them by w(s) and a(s)
Since s(t) gives the universal covering map of C-{(0, 1/9, 1}, it
induces the isomorpﬂism nl(C\{O, 1/9, 1)) F1(6). Let ¥ be a closed

a b] be the corresponding element of
cd :

Fl(ﬁ). After an analytic continuation along ¥y, @ and 6 are changed by

path in C\N{0, 1/9, 1}, and let (

the transformation

@(s) a b)) (@(s)
-—)
w(s) ¢ d w(s)
Next we determine the differential equation for @ and 5. It is

" easy to see that w and w satisfy the equation
o o'’

~ ~

m w!'

0 o

¢ o'

m' a)'! .

F'* - F' + F =20 (2-1)

~ ~

m' w"
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By a little bit of calcuation we obtain

0 @ ) mz 1 m2
~ o~ ds/dt s 1ds’
v o s dt
¢ o'’ 0 '
o~ ~ = d]l. /ds, (2-2)
@ o' o @'
a)l m!’ 1 2 2
~ o~ | Ty {2(dw/dT) - w(d/dTt) " w).
' o' (ds/dT)
Here we note thét % %% is a modular form of weight 2 for F1(6). The
values of mz, s and % %%, at cusp points are given as the following.
T 0 1/3 1/2 ©
mz - - double zero —_
s 1/9 1 simple pole simple zero
1 ds . .
s dt simple zero simple zero —_
m2 C

Thus we obtain ds/dT = s(s-D(9s-D ° where ¢ is a certain constant.

As for the third term of (2-2) it has double poles at s=0, 1/9, 1 and

as+b

.

s=o ig its zero of oder 5. Then it takes the form > > 5
) : s“(s~-1)7(9s-1)

We can determine the constants a and b by comparing with the

s-expansion of @ :

w(s)=1 + 3s + 1552+ 93s3

+ 639s% + ...,
By this caluculation we find that (2-1) coincides with DG’

Here we determine the constant ¢ from the relation
) ,

@ _ c 1 _ . .
s ds/dc - s-D(9s-1)° In fact (1-1) and (1-3) induce the equality
2
c - A2 .y L1-39=-"-")
=D (9s-1) - @749+ ") Grigy oy ¢

By substituting s=0 (namely g=0) we get ¢ = wi—.

§3. The relation between A(t), B(t) and w(s), @(s).

Let us consider the intermediate differential equation

Dy : t2(t2-34t+1)y ' + (2t2-5lt+l)y’ + %(t—lO)y = 0.

-5 -
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If we substitute t=s(9s-1)/(s-1) in D* and perform the gauge

6
transformation y=(s—1)1/22, we obtain DG' On the other hand D is the

symmetric tensor product of Dz. Namely the vector space of solutions

for D is given by the symmetric tensor of the one for Dz. Then we

obtain three solutions of D:

9 (1) = (s()-1)e2(t) = ¢
9, (1) = (s(t)-Da(t)o(t) = t9 (3-1)
94t = (s ()-1)B2(t) = 2o

Obviously ?1 is holomorphic at t=0.
Let us find a solution g(t) of L(y)=1 in terms of ?i' Set
g(t)= cl?l+ 02?2+ c3?3, where Ci(1=1’2’3) is a function of t. We

assume the following
z ¢, ?i = 0
(3-2)
b ' t -
2 c, ?i =0
Then we have
g' = Z c,?

gvoe=zci?iinﬁ +ZC."P LN

0 we have

1

Because 9i(i=1,2,3) satisfies L(y)

L(g)

H

Po(t)g + Pl(t)g '+ P2(t)g' + P

z ci(PO(t)?i"' + P

3(t)g

(t)‘Pi + P

(t)?i" + P (t)?i)

1

+ Po(t) z c,'?,

2 3

where Pi<t)(i=0,1,2,3) is the coefficient of (d/dt)i in (0-4). So we
request that
Po(t) > ci ?i = 1. (3-3)

From (3-2) and (3-3) we get the required condition :



o1

%y %y ?3 ¢ 0
AT SRR £ Cy' = 0
?) ?y 9 ¢y 1/P,

Hence we obtain the solution g(t) in a neighborhood of t=0 of

L(y) = 1 by putting

t t t
g(t) = ?f ftreleldt - 2r9[ friteldt + r29J frreldt,  (3-4)
0 0 0
? ?s ?3
- 1 -— ’ ? 1 9 |
where f(t) = Po(t)-W(t)’ W(t) = ? ?, ?a and t'= dt/dt.
?1' ?2" ?3f'

In (3-4) the path of integral is supposed to be a line segment from

0 to a point t.

3 3

We can show that W(t) = 2¢“(dt/dt)". If we note

2
dat _ 2§_:l§%il and the first equality of (2-2), we have
(s-1)
3 (s-1)°
(s(95-1)(952-185+1)}

As we will show in the next section ¢ and g are holomorphic in the

W(t(s)) = 2(2mi)

3

neiborhood of t=0. It Es easy. to see the relations:
{ A(t) = -9(t),

B(t) = 6g(t).

(3-5)

§4. Monodromy trick.

Tﬁe differential equations (0-2) and (0-3) have same
singularities t=0, A, A'; o, Here we calculéte the monodromy of the
soclutions ?i(t) (i=1,2,3) and g(t) around t=0 and t=4,.

At first we examine the singularity t=0. Let vo be a closed arc
in € \{0, A, A1'} going around t=0 in the positive sense. The mapping

t = s(9s-1)/(s-1) gives a biholomorphic correspondence between a
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neighborhood of s=0 and that of t=0. When t moves along vo, § varies
around s=0 in the same sense also. By observing the correspondence
Tt — s{(t) we know that vo induces the translation t — t+l1. Because

w(t) has a trivial monodromy around t=0, v,. induces the monocdromy

0
© 1 1 @

M,y —_— . (4-1)
® 0 1 ®

Next let us study the singularity t=A. This point corresponds to

= Q;%ZZ on the s-plane. Let v be a closed arc in € \N{0, A, A"}

going around t=1 in the positive sense. We supporse YA starts from

a point near t=0. This loop corresponds to an arc from a point s=soy

near s=0 to a point near s=1/9. Because we have s = = 0 and

S 1/9, vl should carry t=« to t=0. The composite loop vl~vl

t=0 =

corresponds to a loop starting from SO and goes around s=6 in the

positive sense. The point ¢ is not a singularity of D Henbe this

6"
loop induces a trivial monodromy. So the monodromy M/1 (relative to

t(a, @)) must be of order 2. By a little bit of observation we know

that M/1 maps t=1/3 and t=1/2 to t=-1/2 and t=-1/3, respectively.

Hence ?A induces the transformation t — - %;. If we calculate the

values w({L{) and &(i/ﬁ), then we have

0 -1
M, = X . (4-2)
A /6
6 0

Let { be a iine segment from 0 to t. When t varies along Yoo £

is deformed to the composite arc {-vo. Then.

Pt
9 f(t)t’rz?zdt
JO0
is changed to

't

82

Tt T? 3244,

JO
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where ~ indicates the result of the monodromy along vo. Using (4-1)
we have

Tt

f(t)

T(t)

T(t) + 1
TU(E) = T' ()

e(t) = 9(t)
By the same way we can calculate the monodromy of other terms in

(3-5). As a consequence yb induces a monodromy relative to

t .
(‘Pl) ?27 ?3’ g)-

( \ ( Y [ \
?1 1 0 0 0 ?1
¢2 1 1 0 0 ?2
—_—) .
?3 1 2 1 0 ?3
g - 0 0 0 1 g
\ J \ J \ J

Thus we know that g(t) has a trivial monodromy around t=0 and it is
single valued holomorphic there.

By a similar method (4-2) induces the monodromy along VA:

/ 3\ 's - 3\ s \
91 0 0 6 0 ?1
2 | 0 1 0] 0 9y
SN _ R (4-4)
?5 1/6 0 0 0 ?3
g | -C/6 0 -C 1 g
J \ _ /7 \ J
' A 2 A 2 2
where C = fr'e dt + 6 fr't e dt. (4-3)
0 0
This indicates that ®(t) = -C ¢(t) + 6 g(t) is single valued

holomorphic in the neighborhood of t=A. Namely ®(t) is single valued

holomorphic on (t € € | |t] < A'}. If we recall (3-5), then we have
limsup “/]C a_ *+ b | = %T = A.
oo n n

If we consider that Z antn has the radius of convergence A and {an}
satisfies (0-1), we can show that
la_| ~ (/0"
n

Then we have
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b
-
a

n

C +

By changing the variable from t to s in C we obtain

1/9 .2 N
1(3) =-3 (271i)? f 25—;%%§1l @2 (s) ds.

0

(4-4)

If we rewrite it in terms of the variable T, we have the required

form in the Proposition.
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