NORM INEQUALITIES EQUIVALENT TO LÖWNER-HEINZ THEOREM ## 弘前大·理 古田 孝之(Takayuki Furuta) ABSTRACT. We give several norm inequalities equivalent to the famous Löwner-Heinz inequality. THEOREM. If A and B are positive bounded linear operators on a Hilbert space, then the following properties hold and follow from each other. - (1) $A \ge B \ge 0$ ensures $A^S \ge B^S$ for any $1 \ge s \ge 0$. - (2) $\|AB\|^q \le \|A^q B^q\|$ for any $q \ge 1$, namely $\|A^q B^q\|^{1/q} \le \|A^p B^p\|^{1/p}$ for any $p \ge q > 0$, that is, $f(p) = \|A^p B^p\|^{1/p}$ is an increasing function on p. - (3) $\|A^SB^S\| \le \|AB\|^S$ for any $1 \ge s \ge 0$, namely $\|A^{1/s}B^{1/s}\|^S \le \|A^{1/t}B^{1/t}\|^t$ for any $s \ge t > 0$, that is, $g(s) = \|A^{1/s}B^{1/s}\|^S$ is a decreasing function on s. - (4) $\|AB\|^{(p+q)/2} \le \|A^pB^p\|^{1/2} \|A^qB^q\|^{1/2}$ for any $p \ge 0$, $q \ge 0$ with $(p+q)/2 \ge 1$. - (5) $\|A^{st}B^{st}\|^2 \le \|A^sB^s\|^{2st/(s+t)} \|A^tB^t\|^{2st/(s+t)}$ for any s>0, t>0 with $2st/(s+t) \le 1$. - (6) $\|AB\|^{(p+q)/2} \le \|A^pB^q\|^{1/2} \|A^qB^p\|^{1/2}$ for any $p\ge 0$, $q\ge 0$ with $(p+q)/2\ge 1$. - $(7) \|A^{st}B^{st}\|^{2} \le \|A^{s}B^{t}\|^{2st/(s+t)} \|A^{t}B^{s}\|^{2st/(s+t)} \text{ for any } s>0, t>0 \text{ with } 2st/(s+t) \le 1.$ We remark that (1) has been shown in [cf., [3][4][5][6] etc.] and (3) is shown in [2]. Here we state the following lemma. Lemma. If A and B are positive bounded linear operator on a Hilbert space, then $\|A^{(s+t)/2}B^{(s+t)/2}\|^2 \le \|B^tA^{s+t}B^s\|$ for any $s \ge 0$ and $t \ge 0$. Proof of Lemma. $$\begin{split} \|A^{(s+t)/2}B^{(s+t)/2}\|^2 &= \|B^{(s+t)/2}A^{s+t}B^{(s+t)/2}\| \\ &= r(B^{(s+t)/2}A^{s+t}B^{(s+t)/2}) (r(A) \text{ means the spectral radius of A}) \\ &= r(B^tA^{s+t}B^s) \quad \text{since } r(AB) = r(BA) \text{ for any A and B} \\ &\leq \|B^tA^{s+t}B^s\| \,. \end{split}$$ Proof of Theorem. Proof of (3). Here we give an alternative proof to (3). Put $D = \{s \in [0,1] ; \|A^SB^S\| \le \|AB\|^S\}.$ Then D is a closed set such that 0, l ∈ D, so we have only to show that if s, t ∈ D, then (s+t)/2 ∈ D. $$\|A^{(s+t)/2}B^{(s+t)/2}\|^2 \le \|B^tA^{s+t}B^s\| \quad \text{by Lemma}$$ $$\le \|B^tA^t\|\|A^sB^s\|$$ $$\le \|AB\|^t\|AB\|^s = \|AB\|^{s+t} \quad \text{since s, } t \in D,$$ so that $\|A^{(s+t)/2}B^{(s+t)/2}\|^2 \le \|AB\|^{(s+t)/2}$, that is, $(s+t)/2 \in D$, whence we have (3). - $(2) \longleftrightarrow (3)$. Its proof is obvious. - $(3) \longleftrightarrow (1)$. We may assume that A and B are invertible. - Assume (3). The condition (3) is equivalent to the following (8) by the homogeneity of norm - (8) $\|AB\| \le 1 \text{ ensures } \|A^SB^S\| \le 1 \text{ for any } 1 \ge s \ge 0.$ - (1) is equivalent to the following (9) - (9) $\|A^{-1/2}B^{1/2}\| \le 1 \text{ ensures } \|A^{-s/2}B^{s/2}\| \le 1 \text{ for any } 1 \ge s \ge 0.$ By replacing A by A^{-2} and also B by B^2 in (9), so we have (8) and this condition (8) is equivalent to (3), so we have (1) \longrightarrow (3). Whence we have $(1) \longleftrightarrow (3)$. (2) $$\longrightarrow$$ (4) and (6). Assume (2). Then $$\|AB\|^{p+q} \le \|A^{(p+q)/2}B^{(p+q)/2}\|^2 \quad \text{by (2) since } (p+q)/2 \ge 1$$ $$\le \|B^pA^{p+q}B^q\| \quad \text{by Lemma}$$ $$\le \|B^pA^p\|\|A^qB^q\| \quad \text{or } \|B^pA^q\|\|A^pB^q\|$$ whence we have (4) and (6). (4) or (6) \longrightarrow (2). Put p = q in (4) or (6), then we have (2). $(4) \longleftrightarrow (5)$ and $(6) \longleftrightarrow (7)$. Put s = 1/p and t = 1/q in (4) and (6) and also replace A by A^{st} and B by B^{st} , then we have (5) and (7) and the reverse implications are obvious. Whence the proof of Theorem is complete. REMARK. Related to (2) it is easily verified that $\|AB\|^q \le \|A^qB^q\|$ does not always hold for 1 > q > 0. Related to this result we would like to remark the following result. Put $h(p) = \|A^pB^p\|/\|AB\|^p$ for any $p \ge 0$. (4) asserts that $h(p)h(q) \ge 1$ for any $p \ge 0$, $q \ge 0$ with $p+q \ge 2$. Put $A = \begin{bmatrix} 5 & 3 \\ 3 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. Then $h(1/2) = \sqrt{5}/34^{1/4} < 1$ and $h(3/2) = \sqrt{233}/34^{3/4} > 1$ but $h(1/2)h(3/2) = \sqrt{1165}/34 > 1$. Acknowledgment. On December 6, 1988 Professor H. Araki has given an excellent lecture at the meeting of Operator Theory at the Research Institute of Mathematical Sciences of Kyoto University ([1]). We became aware of the importance of (2) in his lecture. We are really impressed with his instructive topics, so here we have been able to give a short proof to (3) by using the idea of Pedersen ([6]). We would like to express our thanks to Professor H. Araki for his attractive topics. Addendum. Recently we have the following results in [8] as an application of [7]. THEOREM 1. If A and B are arbitrary bounded linear operators on a Hilbert space, then the following properties hold and follow from each other. - (1) $A \ge B \ge 0$ ensures $A^S \ge B^S$ for any $1 \ge s \ge 0$. - (2) $\|AB\|^{q} \le \|A\|^{q} \|B^*\|^{q} \|$ for any $q \ge 1$, namely $\|A\|^{q} \|B^*\|^{q} \|A\|^{p} \|B^*\|^{p} \|A^{p}\|^{1/p}$ for any $p \ge q > 0$, that is, $f(p) = \|A\|^{p} \|B^*\|^{p} \|A^{p}\|^{1/p}$ is an increasing function on p. - (3) $\||A|^{s}|B^{*}|^{s}\| \le \|AB\|^{s}$ for any $1 \ge s \ge 0$, namely $\||A|^{1/s}|B^{*}|^{1/s}\|^{s} \le \||A|^{1/t}|B^{*}|^{1/t}\|^{t}$ for any $s \ge t > 0$, that is, $g(s) = \||A|^{1/s}|B^{*}|^{1/s}\|^{s}$ is a decreasing function on s. - (4) $\|AB\|^{(p+q)/2} \le \|A\|^p \|B^*\|^p \|^{1/2} \|A\|^q \|B^*\|^q \|^{1/2}$ for any $p \ge 0$, $q \ge 0$ with $(p+q)/2 \ge 1$. - (5) $\|AB\|^{(p+q)/2} \le \|A\|^p \|B^*\|^q \|^{1/2} \|A\|^q \|B^*\|^p \|^{1/2}$ for any $p \ge 0$, $q \ge 0$ with $(p+q)/2 \ge 1$. Definition 1. An operator T is said to be perinormal if $$\left(\mathbb{T}^*\mathbb{T} \right)^n \leq \mathbb{T}^*\mathbb{T}^n$$ holds for every natural number n. Our new class of perinormal operators occupies the place shown in the following schema and the inclusions are all proper. Normal \subseteq Quasinormal \subseteq Heminormal ⊊ Perinormal ⊊ Normaloid Theorem 2. If A and B* are perinormal, then (*) holds; (the following (1) and (2) hold and follow from each other. - $(*) \bigg \langle \text{(1)} \| AB \|^n \leq \| A^n B^n \| \text{ for every natural number n.}$ - (2) $\|AB\|^{n+m} \le \|A^nB^m\|\|A^mB^n\|$ for every natural number n and m. ## REFERENCES - [1] H. Araki, On several operator inequalities in Mathematical physics, Symposium on Operator Theory, RIMS, Kyoto Univ., Dec. 6, 1988. - [2] H.O. Cordes, Spectral Theory of Linear Differential Operators and Comparison Algebras, London Mathematical Society Lecture Note Series 76, 1987. - [3] E. Heinz, Beiträge zur Störungstheorie der Spektralzerlegung, Math. Ann., 123(1951)415-538. - [4] C. Löwner, Über monotone Matrixfunktionen, Math. Z., 38(1934)177-216. - [5] T. Kato, Notes on some inequalities for linear operators, Math. Ann., 125(1952)208-212. - [6] G.K. Pedersen, Some operator monotone functions, Proc. Amer. Math. Soc., 36(1972)309-310. - [7] T. Furuta, Norm inequalities equivalent to Löwner-Heinz theorem, to appear in Reviews in Mathematical Physics, Vol. 1, No. 1(1989). - [8] T. Furuta and J. Hakeda, On norm inequality $\|AB\|^n \le \|A^nB^n\|$, preprint. Department of Mathematics, Faculty of Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036 Japan