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The adjacency operator of an infinite directed graph

HIROMITSU SASAOKA

\S 1. Introduction. .In the graph theory, an adjacency matrix has been considered

for finite graphs [2]. In [7], Mohar introduced the adjacency operator $A(G)$ for an infinite

undirected graph $G$ and discussed its spectral radius $7^{\cdot}(G)=r(A(G))$ . One of his main

results is that if a sequence $\{G_{n}\}$ of subgraphs of a locally finite graph $G$ with bounded

valency converges to $G$ , then $r(G_{n})$ converges to $r(G)$ . Recently Biggs, Mohar and Shawe-

Taylor [1] discussed the relations between structure and the spectral radius of a undirected

graph with a finite isoperimetric constant. Since a graph discussed by them is undirected,

if its adjacency operator is bounded, then it is self-adjoint. From this point, we defined the

adjacency operator for an infinite directed graph in [4], in which the adjacency operator is

not always self-adjoint even if it is bounded.

This report consists of 5 sections;

\S 1. Introduction.

\S 2. Adjacency operators.

\S 3. Classifications by adjacency operators.

\S 4. Convergence of graphs.

\S 5. The spectrum of a graph.

In \S 2, we memtion some basic definitions on graphs and the definition of the adjecncy

the adjacency operator $A(G)$ of an infinite directed graph $G$ . In \S 3, several classes of

adjacency operators are characterized by their graphs. For example, $A(G)$ is normal,

hyponormal, unitary and positive etc.. In \S 4, we introduce the numerical radius of a

graph and discuss its continuity. In the final section, we consider the form of the spectrum

of a graph.

\S 2. Adjacency operators. First we state some definitions for a graph. A directed

graph $G=(V, E, \partial^{+}, \partial^{-})$ is a system of sets $V,$ $E$ and maps $\partial^{\pm}$ : $Earrow V$ . An element
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$v\in V$ (resp. $e\in E$ ) is called a vertex (resp. arc). For an arc $e\in E,$ $\partial^{+}(e)\in V$ is an initial

vertex and $\partial^{-}(e)\in V$ is a terminal vertex. For each vertex’ $v\in V$ , the outdegree $d^{+}(v)$ ,

the indegree $d^{-}(v)$ and the valency (or degree) $d(v)$ are defined by

$d^{+}(v)=\#\{e\in E,\cdot\partial^{+}(e)=v\}$ , $d^{-}(v)=\#\{e\in E;\partial^{-}(e)=v\}$ ,

and $d(v)=d^{+}(v)+d^{-}(v)$ ,

respectively. A graph is called locally finite if every vertex has finite valency. A graph

has bounded valency if there is a constant $M>0$ such that $d(v)\leq$ $M$ for any vertex

$v\in V$ . We introduce common servers and receivers for pairs of vertices. If $\partial^{+}(e)=u$ and

$\partial^{-}(e)=v$ for some $e\in E$ , then $u$ is a server of $v$ , and $v$ is a receiver of $u$ . A vertex $w$

is called a common server of $u$ and $v$ , if $w$ is a server of $u$ and $v$ . Similarly $w$ is called

a common receiver of $u$ and $v$ , if $w$ is a receiver of $u$ and $v$ . Denote the number of all

common servers (resp. common receivers) of $u$ and $v$ by $d^{+}(u, v)$ (resp. $d^{-}(u,$ $v)$ ). We

define $the\cdot foll\dot{o}wing$ subsets of $V\cdot$,

$D^{+}(v)=$ { $u\in V;u$ is a receiver of $v$ },

$D^{-}(v)=$ { $u\in V;u$ is a server of $v$ },

$D^{+}(u, v)=$ { $w\in V;w$ is a common receiver of $u$ and $v$ }, and

$D^{-}(u, v)=$ { $w\in V;w$ is a common server of $u$ and $v$ }.

Throughout this note, a graph means a locally finite directed graph without multiple

arcs, that is, for any vertices $u,$ $v\in V$ there exists at most one arc $e\in E$ with $\partial^{+}(e)=u$

and $\partial^{-}(e)=v$ .

Next we define the adjacency operator of an infinite directed graph. Let $H$ be a Hilbert

space $l^{2}(V)$ with the canonical basis $\{e_{v} ; v\in V\}$ defined by $e_{v}(u)=\delta_{v,u}$ for $u,$ $v\in V$ , and

$H_{0}$ the linear span of $\{e_{v} ; v\in V\}$ . Now we consider linear operators $A_{0}$ and $B_{0}$ on $H$ with

the dense domain $Dom(A_{0})=H_{0}=Dom(B_{0})$ defined by
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$A_{0}( \sum_{v\in V}x_{v}e_{v})=\sum_{u\in Vv\in D}\sum_{-(u)}x_{v}e_{u}$ , and $B_{0}( \sum_{v\in V}x_{v}e_{v})=\sum_{u\in V}\sum_{v\in D^{+}(u)}x_{v}e_{u}$

for $\sum_{v\in V}x_{v}e_{v}\in H_{0}$ . Since $G$ is locally finite, $A_{0}$ and $B_{0}$ are well-defined. Both operators

are closable and $A_{0}^{*}\supset\overline{B_{0}},$ $B_{0}^{*}\supset\overline{A_{0}}$, where the bar denotes the closure.

Let us define a closed operator $A=A(G)$ with the domain $Dom(A)$ by

$Dom( A)=\{x=\sum_{v\in V}x_{v}e_{v}\in H;\sum_{u\in V}|\sum_{v\in D^{-}(u)}x_{v}|^{2}<\infty\}$

and

$Ax= \sum$ $\sum$ $x_{v}e_{u}$ ,
$u\in v_{v\in D}-(u)$

for $x\in Dom(A)$ . We call $A=A(G)$ the adjacency operator of $G$ . Here we remark that

the above definition of $A(G)$ is the transpose of the usual one of $G$ . Then we see that

$A\supset\overline{A_{0}}=A_{0}^{**}$ . Similarly we shall define a closed operator $B$ with the domain $Dom(B)$ by

$Dom(B)= \{x=\sum_{v\in V}x_{v}e_{v}\in H;\sum_{u\in V}|\sum_{v\in D^{+}(u)}x_{v}|^{2}<\infty\}$

and

$Bx= \sum$ $\sum$ $x_{v}e_{u}$

$u\in Vv\in D^{+}(u)$

for $x\in Dom(B)$ .

LEMMA 2-1. Let $A$ be the adjacency operator of G. Then

(1) $(Ae_{v}|e_{u})=\{\begin{array}{l}1ifu\in D^{+}(v)0ifnot\end{array}$ (2) $(A^{*}e_{v}|e_{u})=\{\begin{array}{l}1jfu\in D^{-}(v)0if_{J}\iota ot\end{array}$

(3) $(A^{*}Ae_{v}|e_{u})=d^{+}(u, v)$ , (4) $(AA^{*}e_{v}|e_{u})=d^{-}(u\backslash , v)$ ,

(5) $||Ae_{v}||=\sqrt{d^{+}(v)}$ , (6) $||A^{*}e_{v}||=\sqrt{d^{-}(v)}$ .

We shall consider a necessary and sufficient condition for adjacency operators to be

bounded and give an upper-bound for the norm. To do this, we put the maximal outdegree
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and indegree of $G$ by

$k^{+}=k^{+}(G)= \max\{d^{+}(v);v\in V\}$ , and

$k^{-}=k^{-}(G)= \max\{d^{-}(v);v\in V\}$ .

We sometimes regard $E$ as a subset $V\cross V$ , that is, an arc $e\in E$ with $\partial^{+}(e)=u$ and

$\partial^{-}(e)=v$ might be denoted by $(u, v)$ .

THEOREM 2-2. Let $A$ be the adjacency operator of a graph $G$ .

(1) $A$ is bounded if an $d$ on$ly$ if $G$ has bounded valency. Moreover in this case,

$A=B^{*},$ $B=A^{*}$ an $d$

$||A||\leq\sqrt{k^{-}k+}$ .

(2) Assume that $G$ has bounded valency. If th$ere$ exist $k^{-}ver$tices $\{v_{1}, \ldots v_{k}-\}$ and

$k^{+}$ vertices $\{u_{1}, \ldots , u_{k+}\}$ such that $(v_{\mathfrak{i}}, u_{j})\in E$ for $i=1,$ $\ldots k^{-},$ $j=1,$ $\ldots k^{+}$ , then

$||A||=\sqrt{k-k+}$

\S 3. Classifications by adjacency operators. We shall classify graphs with

bounded valency by their adjacency operators. A source of a directed graph $G$ is a vertex

$v$ whose $d^{-}(v)=0$ . A source $v$ is called non-trivial if $d^{+}(v)\neq 0$ . A sink of $G$ is a vertex $v$

whose $d^{+}(v)=0$ . A sink $v$ is called non-trivial if $d^{-}(v)\neq 0$ . And a graph $G$ is normally

symmetric if $d^{-}(u, v)=d^{+}(u, v)$ for any $u,$ $v\in V$ .

It is obvious that the adjacency $A$ is self-adjoint if and only if the graph is undirected

in the sense that $(u, v)\in E$ if $(v, u)\in E$ .

THEOREM 3-1. Let $A$ be an adjacency operator of a graph G. Then

(1) $A$ is $n$ormal if an $d$ on$ly$ if the graph $G$ is normally symmetric.

(2) If $A$ is Ayponormal, then ther$e$ does not exis $t$ a $n$ on-tri$vial$ sinlc of $G$ .
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(3) $\Lambda$ is compact if and on $ly$ if $G$ has $oI1]_{j^{\gamma}}$ finit$ely$ man$y$ arcs.

$REMARI$ \langle . As in th $e$ above (2), if an adjace$I1c_{J^{r}}$ opera$tor$ $A$ is co-hypon $ormal$, th en1

th $ere$ dose not exis $t$ a non-trivial so $urce$ of $G$ .

$L^{t}\urcorner XAM1^{\supset}LL^{\urcorner}S$ : The above graph $t1_{1}eoretica1$ classif cation leads us tlze example of a llof-

mal operator $\ln$ Fig.l. For tliis example, Fig.2 gives $us$ an example whose adjacency

$operato\iota s$ is nonnormal and hyponormal.

It follows from Lelnma 2-1 (3) and (4) that $A$ is liypono$rm$ al if and only if tlie operator

given by infinite matrix $(d^{+}(u, v)-d^{-}(u, v))_{u,v}$ is positive. Hence if $A$ is hyponormal, then

(0) $d^{+}(u)\geq d^{-}(u)$ for all $u\in V$

Clearly (0) implies $G$ does not liave a non-trivial sink. However the condition (0) does not

imply the $1\iota y$ ]) $onorlnality$ of $A$ . An example of this is posed by Fig.3. As a matter of fact,

$A$ is expressed as a matrix

$A=(\begin{array}{llll}0 0 1 11 0 0 01 1 0 00 0 1 0\end{array})$

Take a vector $x=^{\ell}(1,0,0,1)$ . Then we have

$((A^{*}A-AA^{*})x|x)=-2$ ,

so tltat $\Lambda$ is no $l$ hyponormal. Furthermore we know that $A$ is normaloid, $i.e$ , I $A||=\uparrow\cdot(A)$ ,

$5^{-}$
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THEOREM 3-2. Let $A$ be an adjacen$cyop$era $tor$ of a graph $G$ .

(1) The follo rving are $eq$ uivalent.

i) $A$ is a parti$al$ isometry.

ii) $\Gamma oI$ any vertex $v\in V,$ $d^{+}(v)\leq 1$ and $d^{-}(v)\leq 1$ .

iii) $Tl\iota e$ connected components of $G$ are one of the following,

$0$

)
$Q$

$r$ $)$

$J$

(2) Th $e$ following are equivalen $t$ .

i) $A$ is an isometry.

ii) For an$y$ vert ex $v\in V,$ $d^{+}(v)=1$ and $d^{-}(v)\leq 1$ .

iii) Tlie connected com$poJ1$ en $ts$ of $G$ are on $e$ of the following,

$Q$
$J$ ) )

$(S).Tl\iota e$ foll $0$ wing are $eq$ uivalen $t$ .

i) $A$ is un it $a1^{\cdot}f$.

ii) For any vertex $v\in V,$ $d^{+}(v)=1$ and $d^{-}(v)=1$ .

iii) The connected componen $ts$ of $G$ are one of the following,

$Q$
’
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(4) $A$ is a projection if an $d$ only if th $e$ connected componen $ts$ of $G$ arc on $c$ of th $e$

following,
$O$

$Q$

$1\}_{DMARI\langle}$ . As in the case of isometries, the following $are$ equivalent.

i) $A$ is a co-isometry.

ii) For any $ver$ tex $v\in V_{)}d^{+}(v)\leq 1$ and $d^{-}(v)=1$ .

iii) The connected compon $eI1ts$ of a graph are one of the following,

$Q$
’

$\nearrow$

In a directed graph, any sequence of consecutive arcs is called a walk. A walk is

called a trail if all its arcs are distinct. Especially a trail whose endvertices coincide is

called a circuit. Let $N_{k}(i, j)$ denote the number of walks of length $k$ starting at vertex

$j$ and terminating at vertex $i$ . If we denote $A^{k}=a_{ij}^{(k)}$ , then it is known that $N_{k}(i, j)=$

$a_{ij}^{(k)}$ . [2,Theorem 1.9] We can characterize nilpotent operators by the existence of circuits.

TIiEORDM 3-3. Let $G$ be a finite graph and $A$ be a non-zeIo adjacency opera$tor$.

$6l)$ $A$ is nilpot en $t$ if an $d$ only if $G$ has no $circ$uits.

(2) If $A$ is idempotent, then $G$ has at leas $t$ a loop.

. A graph $G$ is called trivial if $G$ has no arcs. A simple undirected graph in which

every pair of distinct vertices are adjacent is called a complete graph. A simple undirected

graph in wliich if every pair of (not necessarily distinct) vertices are adjacent is a super

complete graph.

THEOREM 3-4. Let $A$ be an adjacen$cy$ operator of a grap$jl$ G. $A$ is positive if an $d$

only if the connected com$pon$ en $ts$ of $Gare$ finite super complete or trivial.
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\S 4. Convergence of graphs. In [7], one of his main result is that if a sequence

$\{G_{n}\}$ of subgraphs of a graph $G$ converges to $G$ , then $r’(G_{n})$ converges to $r(G)$ . But

Mohar’s result does not hold for infinite directed graphs. For example, we consider the

shift graph $P$ , whose adjacency operator is a unilateral shift, and the path $P_{n}$ with length

$n$ as a subgraph of $P$ . Though $r(P_{n})=0$ for any $n$ by $A(P_{n})^{n}=0,$ $r(P)=1$ . We note

that, as an adjacency operator $A$ is Hermitian in his case, the spectral radius $r(A)$ of $A$

coincides with the numerical radius $w(A)$ of $A$ . Here $w(T)$ of an operator $T$ on a Hilbert

space $H$ is defined by

$w(T)= \sup\{|(Tx, x) ; ||x||=1, x\in H\}$ ,

cf.[6]. So we call $w(G)=w(A(G))$ the numerical radius of $G$ . By recent work in [3] and [5],

we know that $w(P_{n})= \cos\frac{\pi}{n+1}$ and so $w(P_{n})$ converges to $1=w(P)$ . However we remark

that the numerical radius of operators is not continuous with respect to the strong operator

topology in [6:Prob220], whose counterexample is also acceptable for the numerical radius

of graphs.

For another simple example, let $E_{n}$ be the projection onto the subspace spanned by

$\{e_{k} ; k\geq n\}$ . Then $E_{n}$ converges to $0$ strongly and $w(E_{n})=1$ for all $n$ . As a matter of

fact, $E_{n}$ is regarded as the adjacency operator of the graph whose vertices are $\{1, 2, \ldots\}$

and vert$exk$ has only self-loop for $k\geq n$ .

Nevertheless, we have the following result by assuming a bounded condition, which is

known by the lower semicontinuity.

LEMMA 4-1. Let $T_{n}$ an$dT$ be operators on $H$ .

(1) If $w(T_{n})\leq w(T)$ for all $n$ and $T_{n}$ converges to $T$ in the weak operator topology,

$tAenw(T_{n})con$ verges to $w(T)$ .

(2) If $||T_{n}||\leq\Vert T||$ for all $n$ and $T_{n}con$verges to $T$ in the $s$ trong opera$tor$ topology,

then $||T_{n}||$ converges to $||T||$ .

Next we difined the convergence of graphs. For $u,$ $v\in V$ , we denote $(u, v)\in E$ if there
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is an arc $e\in E$ such that $\partial^{+}(e)=u$ and $\partial^{-}(e)=v$ . Let $\{G_{n}\}$ be a sequence of graphs and

$G$ a graph. We may assume that $V(G_{n})=V(G)$ for all $n$ without loss generality. Then $G_{n}$

converges to $G$ , in symbol, $G_{n}arrow G$ $(narrow\infty)$ if for any vertices $u,$ $v\in V(G)$ there exists

a number $N$ such that for all $n\geq N,$ $(u, v)\in E(G)$ if and only if $(u, v)\in E(G_{n})$ . It means

the $convergence\backslash$ of all entries of the adjacencey operator, i.e. $(A(G_{n}))_{u,v}arrow(A(G))_{u,v}$ for

any $u,$ $v\in V(G)$ . We have the following generalization of Mohar’s result.[7: Prop 4.2]

THEOREM 4-2. Let $\{G_{n}\}$ be $a$ sequence of $su$ bgraphs of a graph G. $Tl_{1}e_{I1}$ the follo$W^{7-}$

$ing$ condition$s$ are $eq$ uivalent:

(i) $G_{n}coI1$ verges to $G$ .

(ii) $A(G_{n})$ converges to $A(G)$ in the strong operator topology.

(iii) $A(G_{n})$ converges to $A(G)$ in the weak operator topology.

For $x=(x_{v})\in l^{2}(V)$ , we denote $x\geq 0$ if $x_{v}\geq 0$ for all $v$ and $|x|=(|x_{v} )$ .

LEMMA 4-3. For a graph $G$ ,

$w(G)= \sup\{(A(G)x, x);\Vert x\Vert=1, x\geq 0\}$

$= \sup${ $(A(G)y,$ $y);||y||=1,$
$y= \sum_{v\in W}y_{v}e_{v}\geq 0$

and $W$ is fnite}.

From the graph theoretical view, the bounded condition in Lemma 4-1 is very natural.

COROLLARY 4-4. If $F$ is a $su$ bgraph of a graph $G$ , th en $w(F)\leq w(G)$ .

Consequently we have a generalization of a result by Mohar [7].

THEOREM 4-5. Le $t\{G_{n}\}$ be a seq $u$ ence of subgraphs of a graph G. If $G_{n}c$on verges

to $G$ , then $w(G_{n})$ converges to $w(G)$ .

COROLLARY 4-6. For a graph $G$ ,

$||A(G)||= \sup${ $||A(F)||;F$ is a finite subgraph of $G$ }.

9



102

COROLLARY 4-7. If $F$ is a subgraph of a graph $G$ , then $||A(F)||\leq||A(G)||$ .

THEOREM 4-8. Let $\{G_{n}\}$ be a seq $u$ ence ofsubgraphs of a graph G. If $G_{n}$ converges

to $G$ , then $||A(G_{n})||con$verges to $||A(G)||$ .

REMARK 4-9. If $G$ is an undirected graph, then $r(G)= \sup\{r(F);F$ is a finite

subgraph of $G.$ } by [7]. To the contrary, if $G$ is a directed graph, then it is not true, $e.g$ .

a shift graph because the adjacency operator of its finite subgraph is nilpotent. However

since $r(G)= \lim_{narrow\infty}$ I $A(G)^{n}||^{\frac{1}{n}})$ one can prove that if $F$ is a subgraph of a graph $G$ ,

then $r(G)\geq r(F)$ .

\S 5. The spectrum of a graph. In this section, we discuss relations between

properties of a graph and its spectrum.

THEOREM 5-1. Let $G$ be $a$ infnite graph. Then the spectra of $G$ is symmetric $\iota vi$ th

respec $t$ to $real$ . axis.

A graph is a bipartite graph if the vertices of $G$ can be partitioned into two disjoint

sets $V_{1}$ and $V_{2}$ in such a way that every edge has one vertex in $V_{1}$ and one vertex in $V_{2}$ .

THEOREM 5-2. Let $G$ be a bipartite graph. Thqn the spectra is symmetric with

respec $t$ to zero.

Next, we define the isoperimetric constant $i(G)$ of a graph $G$ . For a graph $G$ and a

finite subset $X$ of the vertices of $G$ , we define $\partial X$ to be the subset of arcs of $G$ incident

with exactly one vertex of $X$ .

$i(G)= \inf$ { $\frac{|\partial X|}{|X|}$ ; $X$ is a finite subset of $V(G)$ }

A graph is a k-semiregular graph if there exists a constant $k$ such that $d^{-}(v)=k$ or

$d^{+}(v)=k$ for any $v\in V$ .
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LEMMA 5-3. If $G$ is an infinite k-semiregul$ar$ graph such that $i(G)=0$ ,

$th$ en $r(G)\geq k$ .

THOREM 5-4. If $G$ is an infinite graph such that $i(G)=0$ , then

$\max\{\ell-, f^{+}\}\leq r(G)$

$w^{\gamma}Aeref^{-}$ (resp. $l^{+}$ ) is $a$ $\min$ imal number of indegree (resp. outdegree)of $G$ .

COROLLARY 5-5. $IfG$ is a k-semiregul$ar$ graph such that $i(G)=0$ an $dk^{-}=k^{+}=k$ ,

th en $A(G)$ is normaloid an$dr(G)=k$ .
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