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Numerical Study of a Shape Design Problem in Elasticity
by use of Auxiliary Domain Method

Saw WIN MAUNG*
HiDEO KAWARADA**

Abstract. In this paper, we discuss numerical computation obtaining solution of
a two-dimensional shape design problem in linear elasticity. Though this problem
has been solved by using finite element method in [3], we present an alternative
approach in order to use finite difference method. Auxiliary domain method is
applied so that computation, especially at the boundary, can be more easier. One
of the reasons why we use finite difference method is to avoid resetting of mesh
in numerical computing while we change the domain which we consider. In that
case, there are some ways with fixed mesh to solve the problem, for example,
grid generation method. But these methods have some disadvantages such as
losing linearity of the state equation and, obviously, become more complicated.
Our technique provides to study numerical analysis of the problem as simple as
possible.

1. Contact problem with friction

At first we will present steady state problem. Let a,b,c, and ¢ , where
a<band 0 < ¢, < c, be given. We consider two-dimensional elastic body
represented by

(L1)  Q=0Q(e) = {(z1,22) € R?| a<z <b, a(z1) <22 <c}
as shown in the figure 1.1 .
(1.2) I'.=T.(a) = {(z1,22) €ER’| a<z1<b, 2¢2= a(z1)}

contacts with the rigid body which is lower-half of the plane.
Here o € U,4 and the set U,q of admissible controls is defined by

(1.3) Uaa = {a € Ct([a,b]) | 0< (1) < co,

|&'(z1)| < 1 for 1 € [a,b],

|a"(z1)] < ¢z ae. in (a,b),

measure of Q(a) = c3 } .
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figure 1.1

The elastic body is subjected to forces and so deformation occurs. We
denote the displacement vector by u = (ul(ml, z2), uz(z1,z2)) . We assume that
strain tensor

‘ Ou;  Ou; ..
(1.4 o) =3 (Fm+ T2) L hi=1
and stress tensor 7;;(u), 4,7 =1,2, satisfy the linearized Hooke’s law
(1.5) ii(u) = A&; (en(u) +enn(u) + 2pej(u) , 4,5=1,2.

A>0 and p > 0 are Lame’s coefficients and constants. On the boundary of

Q , we define
2

(1.6) T=Ti(w=) n()n , i=12,
ji=1

- where n = (ny,n3) is outward unit normal vector.

Problem

Let force f = (f1,f2) in @, stress p = (p1,p2) on I, and friction
g = constant on I, be given. Then for some given o € U4, the problem is
to find u = u(a) satisfying

r 2
_ZM:‘fz ’ i=1)2.) an
P (9z,~
i=1 .
(P)< u,-=0 y i=1,2 ’ onI‘o
| Ti(w)=p;i , i=12 , onl,
upt+a>0 , Ta(w)>0 |, (up+a)Tp(u)=0- onT,
(Ti(w) <9 5 (- 1T@))w=0 , wuTi(v)<0 onT.

2
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Differentiation which will be used throughout is taken in the sense of distribution.

In (P) , the condition u3 + o > 0 means that the elastic body can not
- penetrate into rigid body. On T, , free boundaries will take place between
touching parts where uy +a = 0, Ty(u) > 0 and separating parts where
uz +a >0, Tp(u) = 0 . There may be another free boundaries between sliding
parts where |Ti(u)| =g, u1 # 0 and static parts where |T1(u)|<g, u; =0.
See the figure 1.2 below. The condition u; 73(u) < 0 states that, on sliding
parts, u; and Tj(u) are opposite.

separating part
up+a>0, To(u) =0

sliding part static part
Tl =g, w£0  IWI<g, =0

y

touching part u, + o — 0, T3(u) >0 ?1
figure 1.2

2. Variational formulation

To express the problem (P) in weak form, we introduce the space

1) V=V@={ve(@'©@)’ | w=0, i=12 onlo},
nonempty closed convex set
(22) K=K(a)={veV| wvyz1,0(21)) +(z1) >0 ae. in(a,b)},

continuous bilinear form

(2.3) a(u,v) = Z / 75 (u) eij(v) dz , | u,vEV,

i,j=1

/ { A div(u) div(v) +2 p Z ei; (u)ei; (v) } dz ,

i,j=1

continuous linear functional

(2.4) (l,v) = / fivi dz + Z / pividy, v€E€V

i,j=1 i,j=1

and continuous convex functional
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(2.5) jc(v)=/ gloi|dy, vevV.
, | A

It can be shown that (P) is equivalent to variational inequality

u=1u(a) € K s.t.
a(u,v —u) + jo(v) = je(u) > (Lv—u) , forall veK.

vy |

For details, see [4]. Now the following classical result holds.

Theorem 2.1

Under the assumption of algebraic ellipticity condition for A and px , the
solution of (VI) exists uniquely.

Since a(.,.) is symmetric, we have equivalent minimization problem

(M) u=u(ca) € K st. J(u)= ﬁlﬁ J(v)
where
(2.6) T(v) = 3a(v,) = (1) + 5 (v)

which is, in physical meaning, total potential energy.

3. Setting of the problem

For a € Uyy , we define cost functional by

(3.1) E(a)=J(u(a)) , whereu=u(a) is the solution of (VI).

Then shape design problem is to find

(SD) a* €Uz st. E(a*) = min E(a) .

We can explain that it is to look for an optimal domain on which displacement
field v causes minimum of total potential energy. Existence of such domain is
proved in the following,. ’ :

Theorem 3.1 ( J. Haslinger and P. Neittaanmaki ) [3]

There exists at least one solution of the problem (SD) .
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4. Regularization and penalization

"To approximate nondifferentiable functional j. by a family of convex and
differentiable functionals, we can regularize it as

(41) jcer = jcer(v) = / g V ’U% +€? d‘)’, (E,- > 0)
|

And to replace the fact that u € K | a penalization operator f: v — S(v)
can be defined by :

(4.2) (ﬂ(v),w)z—é/r (va+a)  wady, weV, (g >0)

Denote ¢ = (& , €, ) . Now we consider the following regularized and
~ penalized variational equation

VE) {u, =‘u,,(a) eV s.t. |
a(ue,v) + (il (ue) +B(uc) ,v) =(l,v) , forall veV.

Note that the operator v —— ji, (v) and f are monotone. Furthermore
kernel of # = K and S is lipschitz continuous. By using these facts, we get
the following convergence result.[1][2]

Theorem 4.1

There exists unique solution u, of (VE) and u, — u : solution of (VI)
strongly in V as € = (e,,€,) — (0,0) .

As before, (VE) is the same as the problem

(M,) ue = u.(a) €V st. J(u.)= min_ J.(v) ,
veV
where
1 . 1
(4.3) Je(v) = 5a(v,v) — (L, v) + jee, (v) + 5— ¥(v)
2 2¢e,
and

(4.4) ¥o)= [ [(a+a)y ] dr.

5
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The problem becomes to find u, = (u¢1, ue2) satisfying

4 9 :
_z.%iﬁsl:f,. Ci=12 . inQ
— 6:::,-
i=1 .

;=0 -, t=1,2 , only

(Pe) J Ti(u)=p;i , i=1,2 , onl,

Ty (ue =—1—(u52+a)“ onT,

Ep

Ty (u.) = el onT

\ 1 & g\/m ’ c ¢

One can notice that the boundary conditions on I, become more simpler
because of regularization and penalization. It will also be helpful in calculating
the derivative of cost functional.

5. Auxiliary domain method

We construct an auxiliary domain Q as shown in the following figure 5.1 .
and denote 2 = (a,b) x (¢,c) .

zy N r
N 4
r ‘
0 Q = Q(a) T,
Cob-~-~---
I'e= l1(:(a)
|
\ / .
0 a : b 1
- Q= Qo ~
To | () : ;
’E ....... L __________ J— |
figure 5.1 I'o

Let us define again the space »
~ A2 -
(56.1) V={UG(H (Q)) | vi=0, i=1,2, onI‘OUI‘o}.
Let €4 > 0 . Our aim is to suppose the minimization problem , in place
of (M.) ,

(M.) i, =G(a) €V st. J(@)= min J.(v) ,
' veV



where

(5.2) J (v) = 1a(v v) + -;— €4 a(v,v) / [v]? de

- (I v) + Jcer(v) + 5o ‘I'('U)

@(.,.) is as in (2.3) , but integration is based on the domain
e=(€&, €, €a ). Wecan explain (M,) as

] v
Zar”(“‘)_f.- , i=1,2 , inQ
i=1 Oz;
Ui =0 , i=1,2 , onTy
Ti(w)=pi , i=12 , onT,
aTtJ (ue) . .o~
D — Ui = , =12 , Q
(P.) 4 €d Z 9z, 0 ? in
U; =0 , i=12 |, onfo
~ ~ 1 . . =
To(ue) + €4 To(u.) = = (Uep + @) onT,
P
ael

Ti(ue) + €4 Tl(ae) = -9

/T 2
ugy +é€;

After all shape design problem to be considered is

(SD.) o €Uug st. E.(af)= min E.(a),
; a €Uyq

and the cost functional to be optimized is

onl..
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Here

(5.3) E, (a) (ue(a)) , where 4, = u.() is the solution of (AZ) .

6. Derivative of cost functional

We need to calculate Frechet derivative of E, (a) to be used in optimizer.

Let us state two lemmas which are useful.

Lemma 6.1

Let C(a) be smooth function which is defined in Q(c) . Then

—d-[/ C(a)d:c]&a:/ 90() 5o da
da Qa) () Ba

+ / C(a) n.v ba dy.
' ()

(f
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Lemma 6.2

Under the same conditions as in Lemma 6.1 , we have

d : 0C(@)
—_ C dy | ba = / ba d
do [/an(a) (e 7] * an(a) Oc *a

+ / {v(C(a)).n + HC(c) } nvba dy.
99 (a)

Here v is gradient operator with respect to x, H is curvature of the curve
0Q(a) and v is to be taken as (0,1) or (0,-1).

Let us-denote w = (w, , wy ) = Ou , Ou . With the help of
« «

Lemmas, we derive to obtain the followings.
| d 1 [ <
(6.1) a3 [, 2o 7@ @ e o

2, ory(a.) 2
— ___.‘J d . (a1 .
= /n Z bz w; dz +/1‘ ZT,(ue) w; dy

i,j=1 c §=1

+/1“ iTi(ae) w; dy

pi=1

\ .
+ /I:c %‘JZ—_;I .1',-,- (u.) e (de) n.vbady

§(6.2) ;jf;[—;— [52 735 (8e) eij(8e) da ]‘«sa

i,j=1

S

i,j=1

67?j(ae) = u

ci=1

' 2
._/Fc 5211- Z 7ij (Ue) €5(we) nv b dy

=1

(6.3) %[éﬁi a, dz]&a :
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2
(6.4) %[—/QZ f; ﬁt.--d:z:](Sa
2
——/Zf.w,dm— Zf.u,.nuéad’y
ni::l

Te i=1

(6.5) [ /Pzp, i dy] /sz, w; dy

pPi=1 P i=1

(6.6) i[/ g Va2, +e d*y]éa

/ g wld'y
+/9{V(V’721+53') n + HA\/ £1+€2}n.1/6ad7
| I

60 [ [ 1 GarerT s

1 ~~ -~
=— — (Uez + @)™ wq dy
€p Jr.

o [ v @aray)
F .

2¢e,
+ H [ (de2 +a)_]2 } n.v da dy
(6.1) ~ (6.7) and equations in (P.) give the final result :

(6.8) Ed(} [E.()] ba

= /[ % 22: { mi(8e) € (@) — ea 7 (8 &; () }

i,_1'2=1 1
—Z{§a3:+ftae:}
+ V(o Ve +ef +——[(uez+a TP)n
+H{ g\ a2 +e? +-—-—[(u52+oz) 1’} | nvbady.
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Since w 1s cancelled, adjoint equaion is not necessary to be considered. We will

denote the right side of (6.8) by fl‘c ¢ bady .
In actual computation, we want to work out with the admissible set
(6.9) Waa = {a eCh([ad]) | 0< &(zl) < co,
| lo'(z1)] < e for z, € [a, 8],

la"(z1)] < ¢ a.e. in (a,b) }

from which restriction for measure of () is excluded. But it is unavoidable to
retain that condition. Therefore we try to include it again in cost functional as

(6.10) Fi(a) = E.(a) + k |cs —m(Q)|?,

where k is a positive constant and m(Q) is notation for measure of (Q(a)).

At last it becomes to study numerically the shape design problem

g’l\)e ar € Waq s.t. 1/7; al) = min ﬁ’ea.
&D.) o st Rl = i Fu(@)

It can easibly be seen that

(6.11) -;(—x-[ﬁ(a)] bor

ba dy.

1
. ¢ bady+2k (c3— m(ﬂ?) /r Tra@))?

For certain o« , we can write the right side of (6.11) like as ch ® bady .

7. Optimizing algorithm
Numerical computations are carried out as stated below.
Step 0 : Initial o € Wsq is given. 7
Step 1 : Solve (J/VI\,)
Step 2 : Compute & .
Step 3 : Take fa=—p® (p>0) .
Step4 : Set @ — a+ba .
Go to Step 1.

10
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Relaxation method is used to solve (M\e) . To optimize ﬁ, , according
to Pironncau’s mcthod , we take 6a as 6o = —p ® (p > 0) so that

_—d;[ﬁs(a)] ba < 0. Suitable p had to be selected in order to that a + 6 lies
.in the admissible set W,q4. -

8. Numerical examples

We take f = (f1,f2) =(0,0) for simplicity and use the data :

a=-10,b=10,¢c=15,c=-0.5 mesh size h=%,—116-
0020.5, (5] "—’05, Cz=4.0, C3=2.75 2h2
' €,€a=2h%, A%,
A=1.0, p=1.0, ¢ =0.001 rycd
k=380 ‘ h 2h
@=h 35
For p = (p1,p2) , see the following figures.
,’\ DC.‘_ o /[\ 951_
P (0 —2("1‘ —%—‘) ‘_5 P C"'lCoJ"r_-a —ZCDJﬁ—-:’) 1.5

.

’H
)
ol

{
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