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On absorbing sets for evolution equations
in fluid mechanics

By Kazuo OEDA (Japan Women's University)

XAk —H (ARFLINY)

§1. Introduction..

We consider an evolution equation generated by a
subdifferential operator and show the existence of an absorbing
set for this equation. As for examples, we deal with the Navier-
Stokes eqguation and the heat convection equation in a time- |
dependent domain Q(t) in RZ.

In the case of a fixed domain Q(t) = Q, Constantin- Foias-
Temam [1] and Foias-Manley-Temam [2] studied the Navier-Stokes
equation and the heat convection equation‘respectively. They
discussed the existence of absorbing sets and attractors in
their papers. (See also Temam [61.)

§2. Abstract equation.

Let H and V be two Hilbert spaces with V ¢ H. We identify
H with a subspace of V', where V~ stands for the duall of V. We
note Vc Hec V™.

Let mt be a proper lower semicontinuous convex function

and Swt be a subdifferential of wt. We assume D(wt) c V. Ve

notice that D(awt) c D(wt) holds.
We make some assumptions on wt
Assumption 1. (Poincare type inequalityi

There exist a positive constant C, > 0 such that

1
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(1) wt(u) 2 C]"uﬂs > Clﬂu"é for any u € D(wt).

Assumption II. There‘exist positive constants tO)C2 and C3

such thatlthe next properties hold:

For every t0 € [0, T] and uO € D(o 0). There exists an

H-valued absolutely continuous function v(t) on a closed

interval l(to) = [max(t0 - Ty 0}, min{t0 T, T}l satisfying
t
2) dvety —u < Coelt -t -0 "(un)”2 for each t € I(t))
and
t to to

(3) @ (v(t)) ¢ ¢ “(u ) + Corlt-t lre “(u ) for each t € I(t))

Assumption IIT. (Green's formula type)
For any u € D(awt) and g € Swt(u), the following holds

4 - (g, u)H = 2wt(u)

Remark. The constant 2 in the right hand side of (4) is
not essential.
Now, we introduce a bilinear operator Bt mapping V X V

into V' and D(Swt) X D(awt) into H such that

(BO) (Bt(u, V), V)H = 0 for any u, v € V ,
0 1-0 -0, 6
t . 4, 4, 4, 4
(B1) iB (u, v)JIH < L4HuHH "qu "v"v NgHH

for u € VvV, v € D(ewt) and g € Swt(v),

1-0 0

t t , . 5
4(82) IB" (u, v)IIH + 1B (v, u)llH < Lsﬂuﬂv Hvﬂv HKHH

5

for u € v, ve€ D(Swt) and g € Bwt(v).
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0 -0 1-6

6

83 b, vh. wl < ¢ HuH‘6°ﬂuH1b 6 vy -1 neﬁ?uwu
' » Wiyl 2 Seltitiy v Viy = iiwlly H
for4u. v, w € V',
where Ci (i = 4, 5, 6) are positive conétantsuand Gi € [6.1)

Next, we :are given a linear operator R(t) mapping V into

V™ and D(Swt)'into H such that

1-6

(R, IRCOul, ¢ C huly, - Ugh)7 for u e D'y, & € dotw),
1+8, 1-64
(R2) [ (RCu, v | ¢ Clully,  “-lul, for u € vV ,

where Ci(i=7,8) are positive 60nstan£s and Gi € [0,1) (i=7,8).
Then, we consider the nonlinear evolution equation (E)

in H as follows

[N
=

(E)

+ 90ty + BYu, W+ R(OHU > £,

Q.

t
where f is given in H.

Here, we define a solution of (F) and an absorbing setr
for (E) in V.

Definition 1. Lét u : [0, T] — H. Then u is called a
solution of (E) on [0,T] if it satisfies the following‘
properties (i), (ii).and (iii) :

(i) u € C([O0,T1 ; HY ,

(ii) u(t) is absolutely continuous in t on [0,T] and
4% e Lo, T H .,

(iii) wu(t) € D(awt) for a.e. t € [0,T] and there is a function

1.2

g € (0, T:H) satisfying g(t) € awt(u(t)) and
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v g+ B, ut) + RO = £t

-

for a.e. t € [0,T].

Definition 2. Let u(t) be a solution of (E)Dsatisfing an
initial condition u(0) = u € D). Then a éubsét;& of V is
called an absorbing set for (E) in V if for an arbitrary |
bounded set&Bt:-V. there exists a positive number i(&D'SUCh
that if the initial data ug is in &Sthen u(t) Gj& holds all - .
t > t®.

83. Examples.

We will give some examples in fluid mechanics.

Example 1. Let us consider the Navier-Stokes equation in
QCt) c Rz; We assume that there exists a bounded set B in R2
satisfying Q(t) ¢ B and the boundary 9Q(t) is sufficiently
smooth with respect to (x, t). Moreover, suppose'that a function

B(-,t) on 9Q(t) is the bouﬁdary valﬁe of a smooth solenonidal

function b(:,t) which is defined on Q(t); Then we consider

uy + (U*V)u = VAu - Vp + f in QCt) .
(NS)  divou = 0 in QCt)
ulggry = B ooouly g =a

; . - A
where u means the velocity and p is the pressure. Putting u = u

+ b and abbféviating the roof A, we introduce the fol]owihgs

_ v 2 : .
¢plu) = szIVul dx if u € HO(B) ,
_ ; ) ' 1
+ ® if u€H (B \ H (B) ,

and
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0 if u € Kty

'IK(t)(u) =

+o if u € H (B) N\ K(t)
where K(t) = (u € H_(B) | w=0 a.e. in B\ Q(t)).
Then we put

t

¢ (u) = @B(u) + IK(t)(U) for each t € [0,T].
Moreover, we define
Bt(u(t), u(t)) = PG(B)(u~V)u for u € H;(B).

R(t)u(t) = PO(B){(u'V)b + (b-V)u} for u € H;(B),

where PO(B) is the projection L2(B) — Ho(B)' We notice that

(B0O) ~ (B3), (R1) and (R2) are all satisfied if 94 = 95 = 96
= 0, = 1 and 8, = 0
7 2 8 )
3

Remark. (Bl) dose not hold in the case R".
Then, we can reduce the equation (NS) to the abstract

Navier—Stokes equation (ANS) as follows

jo8
=

t

(ANS) + Swt(u(t)) + B (u(t), u(t)) + R(u(t) 3 PG(B)¥(t),

(=9
-+

where f = ¥ - b, - (b:¥)b + vAb and Y is an extension of f
putting zero on the outside of Q(t).

Example 2. Consider the‘heat convection equation in Q(t)
c R2 with the boundary 9Q(t) = 890 v SQl(t). The domain Q(t) is
included in a bounded set B and the boundary 9Q(t) is
sufficiently smooth in (x,t). u, p and B stand for the same as

in Example 1. While 8 denotes the temperature. Then the heat

convection equation is as follows
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(u, + (wvu = - gB + (1 - a@@ - T g + vAu  in QCt),
divu =0 | ' : in Qt),
(HC)-§ 0, + (U-v)0 = kAl in QCt),
ulggeey = 8 ‘91590 =Ty >0 9'8Q1(t) 0
Lu't=o =a 9|t=o = h

After suitable changes of variables (some scalings and

translations), we define for U = t(u, 8
_ 1 2 K 2 ) 1 o1
wB(U) = sz(|Vu| + vlvot Ydx if U€H (B) X wz(B) ,
. ' 2 1 o1
+ if U € (H_(B) X L°(B)} \ {(H_.(B) X W,.(B)) ,
o g 2
and
0 if u € K(t) ,
NS
+o  if U € (H (B) X L2y N K(t)

where K(t) = (U € H_(B) X L2B) ;U =0 a.e. in B\ Q(t)}.
We put

wt(U) = Uy + 1 u) for each t € [0,T1.

¢ K(t)

Moreover, we set

stucty, vty = t(PO(B)(u-V)u, (u-v)8)

1 91
for u € HO(B) b4 WZ(B) s

R(EHUCE) = t(PU(B)((u-V)b + (b'Y)u + RO), (u-"B + (b-V)O),

" and
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3

F(t) = (-b, + (b*V)b + Ab + i—g - Ra(é -

t 5 ), =-(b-Vv)0),
v

<IxR

where § is a solution of a linear heat equation in Q(t) with

g = TO on SQD and 8 = 0 on SQI(t). Furthermore, Ra = agTodB/Kv
and 2d is the diameter of B. Notice that (B0O) ~ (B3), (R1) and

. . . . . ~ o _ 1 _
(R2) are satisfied if 94 = 95 = 96 = 97 =3 and 98 = 0.

Remark. (B1) does not hold if Q(t) c RS.
Then, we introduce the abstract heat convection equation

(AHC) as follows

(o8
=

t

(AHC) + 89 (uct)) + B

(u(t), u(t)) + R(tluCt) > PMBIT(L).

a.
-+

84. Some Lemmas.
First we mention lemmas on Bt.
Lemma 1. Let u, v € D(Swt) and put w = u - v, then

(5) HBt(u. u) —;Bt(v.,v)" <

-0 9

-0 1
4 4in.t 4
hwll o (W)"H ).

g 1-0 1-0 0 0 1
‘ s Lan Aro0t 4 4
04(NwHH HwHV Ilul|v 1) (u)llH +HVHH Hv“v

Lemma 2. Let u, v € V and put w = u - v, then

(6) (BCu, w) - B(v, v), w) = (B(w,u), w)H .

(7) | (B(u, u) - B(v, v), w)Hl

1-9 0 1-9

0
6 6 6 6
< CGHWHH bwit - HuHH.“wHV "wHH

Next we prepare a lemma on wt.

‘Lemma 3. Suppose Assumption Il holds. Let u : [0,T] — H
and mt(u(~)) : [0,T] — [0,+~) be absolutely continuous on [0,T].

Let L = (t € (0,T):;du/dt, dwt(u(t))/dt exist and u(t) € D(th)}.

if



Then, there exist positive constants C, and C, such  that

2 3
.d t _ d , oo At 1/2 et :
(8) Idtw (u(t)))-(g, dtu(t))Hl < C2 Hg"H @ (u(t)) + C3 @ (u(t))
holds for every t € L and g € Swt(u(t)), where C2 and C3 are

positive constants in Assumption II.
Here we consider the following linear abstract evolution

equation (E7).

I
=

(E7) + Bwt(u(t)) 3 f(t) , t € [0,T1.

[o ¥

t
Then we have
Lemma 4. Suppose that Assumption I ~ II hold. Let f€
L2(O,T:H) and u, € D(wo).‘Then,‘there exist a unique pair of
functions u € C([O,T1;H) and g € L2(O,T;H) such that the
following properties (i) ~ (V) hold |
(i) u(t) is strongly absolutely continuous on‘[O,T] and du/dt
€ L2(0,T;H) . | |

(i1) u(t) € DBe') and g(t) € 89 (u(t)) for a.e. t € [0,T1,

(iii) %ﬁ + g(t) = f(t) for a.e. t € [0,T1,

(iV) u(t) € D(wt) for every t € {0,T] and wt(u(t)) is absolutely

continuous on [0,T],

(V) u(0) = u  in H.

Now, we return to the‘equation (E). In what follows in this
section, let o@(t) - satisfy Assumption I ~ III, operators Bt
and R(t) have the properties (B0O) ~ (B3) , (R1) and (R2),/
respectively. Then we have‘

Lemma 5. Let f € Lz(O,T:H) and\u0 € D(¢%). Then a solution

u of (E) with u0) = uo is atmost one if it exists.

3,
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[Lemma 6. Let f € L2(0,T;H) and u, € D(wo). Then there
exists a positive number to (depending on f and uo) such that a
solution of (E) with u(0) = u, exist on [O.tnl.

Lemma 7. Let u be a local solution of (E) on [O,tol
obtained in Lemma 6. Then wt(u(t)) is absolutely continuous in t
on [O;tO].

Here we mention the case that the operator awt + R(t) is
coercive on V.

Lemma 8. Suppose that we can take a positive number o ';

independent of T >‘O such that for any u € D(Swt) and g €

det (uct))

: - 2
(9 (g, u)H + (R(T)u, U)H 2 o Hu"v

holds for each t € [{0,T]. Let u be solution of (E) with u(0) =
uO € D(wo). Then the followings hold :

(i) If £ € L%(0,T;H) , then

(10) uu<t)uﬁ ¢ e @ tuum)ufl + é7"fﬂ22 |
= L2¢0,T;H)

(i)" 1f £ € L”(o,T:H) , then

Ab hueold ¢ ™™ trueond « —oia®, ca - e Y
B (™) L (o, T;H)

Moreover, if a solution u exists on [0,»), then we have
. . 2
(ii) If £f € L"(o,2;H) , then

(12)  ful? ¢ lucort? + Louen?, :
L (o,®;H)" L% Co,=;H)

(13) 1im supuuct)nﬁ < év“f"zz X
t - o - L (o,=:H)

(ii)” If £ € Lw(o,w:H). then we can get two inequalities
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obtained by replacing Hf"22 /&” with Ng02_ /@)% in
L™ (o,=;H) L (o,>;H)
(12) and (13).
Remark. We can show that in the Navier-Stokes equation the
operator Swt + R(t) is coercive in H;(B).
Now, the following two lemmas play important roles in

proving the existence of an absorbing set. Note that we does not

assume awt + R(t) is coercive in the lemmas below.

IFemma 9. Let f be in Lm(O,w:H) or in L2(0,w;H). Let u(t) be

a solution of (E) on [0,T]. Suppose that

(i) u(t) satisfies the following estimate :

(14) ﬂu(t)"ﬁ < A+ A;Hu(O)Hg for any t € [0,T],

0
where A0 and A; are two positive constants independent of T.

and that

(ii) wt(u(t)) is absolutely continuous with repect to t on [0,T].

Then, for any & in (0,T), there exist positive constants a,6 (§),

1
a2(6\ and 33(6), independent of T, depending on &, such that

a, (&) a, (3)

2 1
5 + a3(6))e

(15) et ¢ «

holds for every t € [6,T1.

Corollary of Lemma 9. Let f be in Lm(O.w;H) or in Lz(O,w;H).
If the local solution u on [O,tD] obtained in Lemma 6 satisfies
the estimate (14) in Lemma 9, then u can'bé extended globally to
[0,°),

Lemma 10. Let f € Lm(O,m;H) or f € L2(O,w;H). Suppose that a

global solution u of (E) on'[O,w) has the following properties

(i) There exists a constant A > 0 such that for any € > 0 we can

{0.
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take t0 > 0 (depending on u(0) and €) satisfying

(16) Hu(t)“é $ A+ g for any t 2 t0

(ii) wt(u(t)) is absolutely continuous in t on [0,T].

Then the followings hold

(i) There exist positive constants al(e), a, and a3(8) (those
are-depending on u(0)) such that

t a, (&)
(17) ¢ (uCt)) ¢ (a, + aj(g))e for any t > t_ + 1

2‘ 3 = 0
(ii) vThere exists‘an absorbfng set for (E) in V. ) /
§5. Applications. |
Example 1. We consider the abstract Navier;Stokes equation
(ANS) introduced in §3. Note that Q(t) c Rz.

Then we -have

Theorem 1. If ¥ - b, - (b-¥) + vAb € L™(0,=:L%(B)) or

t
L2(O;w;L2(B)), then there‘exiéts an‘ébsorbing set for (ANS)
in V = H;(B). | |
Outline of the proof. As we mentioned in Remark after Lémma
8, the operator awt + R(t) is coercive in V = H;(B).=Therefore,
Lemma 8 is applicable to (ANS). Hence, by virture of Lemma 9,
,COrollary of Lemma 9 and lL.emma 10, we can show the existence of
an absorbing set. o ~ Q.E.D.
!Examplg 2. We consider the abstract heat convection
equation (AHC) introduced in §3. Note that_Q(t) c R2. Then we
have

- (b+")b + Ab + d%g/v® - R_ (B -

Theorem 2. 1f T = (-b, a

|1
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K/V), -(b:9)8) € L7(0,; LZ(B) X L2(B)), then there exists an
absorbing set for (AHC) in V = H;(B) X @;(B).

Outline of the pfoof( fn‘the eduation (AHCj, the 6perator
90" + R(t) is not coercive. But an a priori estimate on 8(t)
holds(see Lémma 11 Beldwd. Thanks toiLemma il, wé can usé Lemma
9, its éorollary and Lemma 10. Therefore we have estéblished the
theorem. - Q.E.D.

Finally, we mention Lemma 11.

Lemma 11. Let U =‘t(u.9) be avstrong solution of (AHC).

Then there exist functions 91 and 92 such that

(18)  0(-, t) = 0,C, t) + 0, (-, b for a.e. (x, t),
(19 —k/v ¢ 8 ¢, ) <KV for a.e. (x, t),
(20) e, ctril < he-x/vy ol , + NB+/vy_(ol }
L°(B) ~ L (B) L°(B)
X exp(-2kt/v) for t > 0.
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