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On one dimensional nonlinear thermoelasticity

T b f\’f}ﬁﬁ\‘g KL ?<Z¢\ ( Yoshihiro Shibata )

{
In this note, I would like to report recent works by the auther énd
R. Racke, Bonn Univ. ([3], [5]), concerning a global existence of small and
smooth solutions to one dimensional nonlinear thermoelastic equations. in thé
case of a bounded reference configuration. Let us recall the equations of
one dimensional nonlinear thermoelasticity. Let (0,1) be a unit interval
in R, which is identified with the reference configuration R. The thermo-
elastic motion is described by the deformation map: x € (0,1) > X(t,x) €
R and the absolute temperature T(t,x) € R of the material point of
coordinate X(t,x), where t denotes time variable. Then, the equations of
balance of linear momentum and balance of energy are given by (cf. [1]):
(B.M) X, = §X + pgb,
(B.E) (5 + (op/DXD) = BK)_ +d_+ ppr,
where we use the following notation: The subscripts t and x denote diffe-
rentiations with respect to t and x, respectively. oR is the matefial
density. The b and r are specific body force and heat supply, respectively.
For simplicity, I assume that oR= 1 and that b = r = 0, below. € is thg

specific internal energy. q is the heat flux. S is the Piola-Kirchhoff

stress tensor. According to 2nd Law of Thermodynamics and Coleman's
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theorem [2], I make the following assumptions.
Assumptions: (1) There exists a so called Helmholtz energy function Y(F,T)
which is real-valued and in dw(G(B)) such that

(A.D) S = S(Xx(t,x),T(t;x)) and & = e(Xx(t,x),T(t,x)) where

1]

(A.2) S(F,T) (dy/3F)(T,F), (F,T) = ¥(F,T) - T(3y/dT)(F,T) (F = Xx),
G(B) = { (F,T) e R | |F-1] + IT-Tol <B, T>Ty/2}.
TO is a positive constant denoting the naturél temperature of the reference
body R and B is another positive constant. Moreover, I assume that
4.3)  QYY/BF)(F,D) > 0, (3°/3T°)(F,1) < 0, (3°9/3FOT) (F,1) # 0
for (F,T) € G(B).

(2) Thete exists a positive function Q(F,T) € C (G(B)) such that
p

(A.4) q = QX (t,x),T(t,x)) T, (t,x).

And then, (B.M) and (B.E) are rewritten as follows: for t > 0 and x €

(0,1),
(B.M)' Xp = ST,
' 1.2, _
(B.E) (E(XX,T) + 2Xt)t = (S(XX’T)Xt)x + (Q(XX,T)TX)X-
If you use the entropy: N(F,T) = -(3y¢/3T)(F,T), (B.E)' can be rewritten
by:
(B.E)" TN(Xx’T)t = (Q(XX,T)TX)X~

In fact, multiplying (B.M)' by X, implies that %(Xi)t = S5 X Using the

xt’
constitutive relations (A.2), you have the identity: S(XX,T)t = TN(XX,T)t
. — 1
+ S(XX,T)XtX. Since (S(XX,T)Xt)X = S(XX’T)Xt + S(XX’T)th’ (B.E)" follows
from (B.M)' and (B.E)'. Obviously, (B.E)' follows also from (B.M)' and
(B.E)". And then, the system (B.M)' and (B.E)' is equivalent to the

system (B.M)' and (B.E)'".

Put u=X~-xand 6 = T - TO. As boundary conditions, I consider here
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the following four type: for t > 0 and x = 0 and 1,

(D.D) u=0and 6 =0,

(D.N) u =0 and ex =0,
(N.D) u = 0 and 6 = 0,
(N.N) . S = 0 and ex = 0.

Since S can be represented by using the Taylor expansion as follows:

S =8 u + N.9, (N.D) is equivalent to what S = 0 and & = 0 at x = 0 and 1.

1 1
In (N.N) case, in addition to (A.1)-(A.3), I assume that
(A.5) S(l,TO) = 0. _ (
In other cases, you may assume without loss of generality that (A.5) is
valid. 1In fact, you can consider
(3.M)" Xtt = {S(XX,T) - S(l,TO)]X
instead of (B.M)' if (A.5) is not satisfied. But, in (N.N) case, if you
consider (B.M)" instead of (B.M)', you must consider the boundary condition:
S(XX?T) - S(l,TO) = 0 at x = 0 and 1 instead of (N.N) Since it is in-
homogeneous, in general you can not expect to get the decay properties of
solutions to linearized equations, and then the global existence theorem
can not be expected in general.

As initial conditions, I put
(I.0) X(0,x) = x + uo(x), Xt(O,x) = ul(x), T(0,x) = TO + eo(x) in (0,1),

and 6, are given functions. In cases of (N.D) and (N.N), we

where uo, ul 0

assume that
1 -
(A.6) IO ul(x)dx = 0.
In fact, if you integrate (B.M)' under the boundary condition (N.D) or
1 1 .
(N.N), you have IO Xt(t,x)dx = fO ul(x)dx. Since what Xt(t,x) >0 as t > o
is. expected, (A.6) is needed. Since X does not appear in (B.M)' and (B.E)Y

if you put X' = X - ( 1 u, (x)dx)t, then X' and T satisfy (B.M)', (B:E)",



boundary conditions (N.D) or (N.N) and
1
1 ' _ ' _ _
(I1.C) X'(0,%) = x + uy(®), X! (0,%) = u(x) fo uy (x)dx,

T(0,x) =T

0 + Go(x).

l .
Moreover, you have IO Xé(t,x)dx = 0. So, (A.6) is not an essential assump-

tion.

Now, let us discuss the equilibrium stéte. In all the cases, X = x
and T = TO are solutions for initial data: Ug = uy = 60 = 0. 1In cases of
(D.N) and (N.N), integrating (B.E)' on (0,t) x (0,1), you get
1.1 é {E(Xx(t,x),T(t,x)) +‘%Xi(t,x)}dx = c(uo,ul,eo) where

e(ug,up,00) = g {e(lhul(),T 0 () + u; (0 °Jdx, vl = dug/dx,

as long as the solutions exist. If you expect that Xt - 0, XX > X and T -~
T » X and T _being constants, letting t - « in (1.1), you see that X and
T should satisfy:
(1.2.a) (Xm,Tm) =‘c(u0,ul,60),
(1.2.b) (X_,T ) € G(B).
In (N.N) case, in addition to (1.2.a) and (1.2.b), what S = 0 at x = 0 and 1
implies the condition:
(1.21c¢) S(X_,T ) = 0.

On the other hand, if you consider the map: (1,T) € G(B) b ¢(1,T) €
R in (D.N) case and the map: (F,T) € G(B) > (S(F,T),e(F,T)) € R® in
(N.N) case, respectively, the implicit function theorem tells you the
unique existence of (Xm,Tm) satisfying (1.2) providedrthat [uo(x)[, !ul(x)l
and IGO(X)[ are sufficiently small, especially X =1in (D.N) case.

Because, (3¢/3T)(1,T,) = —TO(SZW/STZ)(I,TO) # 0 in (D.N) case and the

O)
Jacobian 3(e,S)/3(F,T) is equal to
ST (32p/5T2) (1,T.) (320/3F%) (1,T.) + T.(320/8FaT) (1,T)> # 0
0 »Tp Ty 0 »To

under the assumption (A.5) in (N.N) case.
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I shall say that X and T will be global smooth solutions if X and T

satisfy (B.M)', (B.E)' for t € (0,) and x € (0,1), éne of the boundary
conditions: (D.D), (D.N), (N,D) and (N.N) for t € (0,<) and x = 0 and 1,
and the initial condition (I.C) for x € (0,1), and if X and T belong to
Cz([O,w) x [0,1]) and (Xx(t,x),T(t,x)) € G(B) for all (t,x) € [0,o) x[0,1].
Roughly spoken, the main result of my talk is fhe following.

Theorem: If initial data u and 6. are sufficiently small and

0° %1 0

smooth and satisfy the suitable compatibility conditions, then there/exists

a unique pair of global smooth solutions (X(t,x),T(t,x)). Moreover, the

following asymptotic behaviours hold true:

(D.D) Xt(t,x)_e-o, Xx(t,x) -1, T(t,x) > T0 as t > oo,
(D.N) X (6,%) >0, X (£,%) > 1, T(t,x) >T_ as t >,
(N.D) Xt(t,x) - 0, Xx(t,x) >~ 1, T(t,x) > T0 as t > oo,
(N.N) Xt(t,x) -+ 0, Xx(t,x) > T, T(t,x) - T0 as t > oo
Remark. The theorem was proved by M. Slemrod [4] in

(D.N) and (N.D) cases, by R. Racke and the auther {3] in (D.D) case and

by the auther in (N.N) case.
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