The singularty on interpolation by rational spline functions

R.H.Wang

T.Torii

Inst. of Appl.Math.

Dept.of Infor. Eng.

Dalian Univ. of Tech.

Nagoya Univ.

Dalian, CHINA

Nagoya, JAPAN

Let \mathbf{P}_n be the collection of all polynomials of degree n,and \mathbf{R}_l^r the collection of all rational functions with the form p(x)/q(x), where $p \in \mathbf{P}_r$, and $q \in \mathbf{P}_l$.

Denote by T the following partition of the interval [a, b]:

$$T: \quad a = x_0 < x_1 < \cdots < x_{n-1} < x_n = b.$$

If a real function R(x) definded on [a, b] satisfies

1° $R(x) \in \mathbf{R}_l^r$, in each interval $[x_j, x_{j+1}]$;

 2° $R(x) \in C^{s}[a,b],$

then R(x) is said to be a rational spline of type-(r, l)^s which respect to the partition T.

In this paper, we shell discuss the rational splines of type- $(2,1)^1$, and type- $(2,1)^2$ with the forms

$$R(x) = p_{1j}(x) + \frac{(x - x_j)(x - x_{j+1})}{q_{1j}(x)}, \quad x_j \le x \le x_{j+1}, \quad j = 0, \dots, n-1,$$
 (1)

where $p_{1j}(x)$ and $q_{1j}(x) \in \mathbf{P}_1$.

Suppose that the interpolation conditions are

$$\begin{cases}
R(x_j) = y_j, & R'(x_j) = y'_j, \\
R(x_{j+1}) = y_{j+1}, & R'(x_{j+1} = y'_{j+1};
\end{cases}$$
(2)

$$\begin{cases}
R(x_j) = y_j, & R(x_{j+1}) = y_{j+1}, \\
R'(x_j) = [f(x_{j-1}, x_j) + f(x_j, x_{j+1})]/2, \\
R'(x_{j+1}) = [f(x_j, x_{j+1}) + f(x_{j+1}, x_{j+2})]/2;
\end{cases}$$
(3)

$$\begin{cases}
R(x_j) = y_j, & R(x_{j+1}) = y_{j+1}, \\
R'(x_j) = y'_j, & R''(x_j) = y''_j,
\end{cases}$$
(4)

respectively, where $f(x_j, x_{j+1})$ denotes the divided difference of the first degree, etc.

Denote by $R_{1j}(x)$ $R_{2j}(x)$, and $R_{3j}(x)$ the rational spline functions of satisfying the interpolation conditions (1)-(2),(1)-(3), and (1)-(4) respectively.

R.H. Wang and S.T. Wu([1][2]) have obtained the following rational piecewise functions which are satisfying the interpolation conditions (1)-(2),(1)-(3), and (1)-(4) respectively,

$$R_{1j}(x) = y_j + f(x_j, x_{j+1})(x - x_j) + \frac{(x - x_j)(x - x_{j+1})[y'_j - f(x_j, x_{j+1})][y'_{j+1} - f(x_j, x_{j+1})]}{(x - x_j)[y'_j - f(x_j, x_{j+1})] + (x - x_{j+1})[y'_{j+1} - f(x_j, x_{j+1})]},$$
(5)

$$R_{2j}(x) = y_{j} + f(x_{j}, x_{j+1})(x - x_{j}) + \{(x - x_{j})(x - x_{j+1})[f(x_{j-1}, x_{j}) - f(x_{j}, x_{j+1})][f(x_{j+1}, x_{j+2}) - f(x_{j}, x_{j+1})]\} / \{2[f(x_{j-1}, x_{j}) + f(x_{j+1}, x_{j+2}) - 2f(x_{j}, x_{j+1})]x - 2[f(x_{j-1}, x_{j})x_{j} + f(x_{j+1}, x_{j+2})x_{j+1} - f(x_{j}, x_{j+1})(x_{j} + x_{j+1})]\},$$

$$(6)$$

$$R_{3j}(x) = y_j + f(x_j, x_{j+1})(x - x_j) + \frac{2[y_j' - f(x_j, x_{j+1})]^2 (x - x_j)(x_{j+1} - x)}{2[y_j' - f(x_j, x_{j+1})](x_{j+1} - x) + y_j''(x_j - x_{j+1})(x - x_j)}.$$
(7)

Denote by $R_i(x)$ (i = 1, 2, 3) the rational spline functions:

$$R_i(x) = \{R(x) \in (2,1)^1 | R(x)|_{[x_j,x_{j+1}]} = R_{ij}(x), \quad j = 0, \dots, n-1\}, \quad i = 1,2;$$

$$R_3(x) = \{R(x) \in (2,1)^2 | R(x)|_{[x_j,x_{j+1}]} = R_{3j}(x), \quad j = 0, \dots, n-1\}.$$

It is not hard to prove the following lemmas:

[Lemma 1] $R_1(x)$ has the singular point in the interval $[x_j, x_{j+1}]$, if and only if

$$sign\{[y'_{i} - f(x_{i}, x_{i+1})] \cdot [y'_{i+1} - f(x_{i}, x_{i+1})]\} > 0.$$
(8)

[Lemma 2] $R_2(x)$ has the singular point in the interval $[x_j, x_{j+1}]$, if and only if

$$sign\{[f(x_{j-1}, x_j) - f(x_j, x_{j+1})] \cdot [f(x_{j+1}, x_{j+2}) - f(x_j, x_{j+1})]\} > 0.$$
 (9)

In fact, by the formula of $R_1(x)$ on $[x_j, x_{j+1}]$ given in (5), the singularity of $R_1(x)$ on $[x_j, x_{j+1}]$ can appear only at point

$$x^* = \frac{[y_j' - f(x_j, x_{j+1})]x_j + [y_{j+1}' - f(x_j, x_{j+1})]x_{j+1}}{[y_j' - f(x_j, x_{j+1})] + [y_{j+1}' - f(x_j, x_{j+1})]} := \lambda x_j + (1 - \lambda)x_{j+1},$$

where $\lambda = [y'_j - f(x_j, x_{j+1})]/[(y'_j - f(x_j, x_{j+1})) + (y'_{j+1} - f(x_j, x_{j+1}))]$. So, it is easy to see that $x^* \in (x_j, x_{j+1})$ if and only if

$$sign[(y'_{j} - f(x_{j}, x_{j+1})) \cdot (y'_{j+1} - f(x_{j}, x_{j+1}))] > 0.$$

By the similar argument, we can prove Lemma 2.

It notes that if $y'_j - f(x_j, x_{j+1})$ or $y'_{j+1} - f(x_j, x_{j+1}) = 0$, then $R_1(x)$ will be a linear function in the interval $[x_j, x_{j+1}]$, so it should has no singular point.

By using the above Lemmas, we have

[Theorem 1] Let the interpolation function $y = f(x) \in C^2[a, b]$. If $R_i(x)$ (i = 1, 2) exists the singular point in the interval $[x_j, x_{j+1}]$, then y = f(x) has the inflection point in the open interval (x_j, x_{j+1}) .

Proof Let $R_1(x)$ exist the singular point in $[x_j, x_{j+1}]$. By Lemma 1, without loss the generality, suppose that the following inequalities hold

$$y'_{i} - f(x_{i}, x_{i+1}) > 0,$$
 $y'_{i+1} - f(x_{i}, x_{i+1}) > 0.$ (10)

It follows Lagrange's mean value theorem, that there exists $\xi \in (x_i, x_{i+1})$, such that

$$f'(\xi) = f(x_j, x_{j+1}). \tag{11}$$

By (10) and (11), there exist η and ζ of satisfying

$$f'(x_j) - f(x_j, x_{j+1}) = f''(\eta)(x_j - \xi), \qquad f'(x_{j+1}) - f(x_j, x_{j+1}) = f''(\zeta)(x_{j+1} - \xi)$$

respectively, where $x_i < \eta < \xi < \zeta < x_{j+1}$. Hence

$$f''(\eta) \cdot f''(\zeta) < 0,$$

and there exists at least one inflection point of f(x) in (η, ζ) . This completes the proof of this theorem for $R_1(x)$.

Similarly we can prove the theorem for the case of $R_2(x)$.

[Theorem 2] Let the interpolation function $y = f(x) \in C^2[a, b]$. If $R_3(x)$ exists the singular point in the interval $[x_j, x_{j+1}]$, then the original interpolation function y = f(x) has the inflection point in the open interval (x_j, x_{j+1}) .

In fact, because of the singular point of $R_3(x)$ may be only appearing at

$$\bar{x} = \frac{y_j''(x_{j+1} - x_j)x_j + 2(y_j' - f(x_j, x_{j+1}))x_{j+1}}{y_j''(x_{j+1} - x_j) + 2(y_j' - f(x_j, x_{j+1}))}.$$

By the same argument shown in the proof of Lemma 1, we have

$$sign\{[y_i''(x_{i+1}-x_i)]\cdot[y_i'-f(x_i,x_{i+1})]\}>0,$$

provided that $R_3(x)$ exists the singular point in $[x_j, x_{j+1}]$.

It follows Lagrange's mean value theorem, that there exists $\xi \in (x_i, x_{i+1})$, such that

$$f'(\xi) = f(x_j, x_{j+1}).$$

By Lagrange's mean value theorem once again, there is a point $\eta \in (x_j, \xi)$, such that

$$f'(x_j) - f'(\xi) = f''(\eta)(x_j - \xi).$$

So

$$sign\{f''(x_i) \cdot f''(\eta)\} < 0.$$

Hence, there exists at least one inflection point of f(x) in (x_i, η) .

This complete the proof of this theorem.

In addition, we may prove that although the interpolation function f(x) has the inflection points in [a, b], however, provided that we are taking all inflection points as the knots of the rational spline function, then the singularity can be avoided to appear. For example, let x_j be an inflection point of f(x), x_{j+1} be not, and there is no another inflection point between x_j and x_{j+1} . Then the first derivative of f(x) will be monotone in the interval $[x_j, x_{j+1}]$. So the inequality (8) will be not satisfied. By Lemma 1, hence, there is no singular point in (x_i, x_{j+1}) .

Therefore, we have

[Theorem 3] For any given interpolation function $f(x) \in C^2[a, b]$, we can construct a partition T of the interval[a, b], such that the rational spline function $R_1(x)$, $R_2(x)$, and $R_3(x)$ based on the partition T have no singularity.

Acknowledgement

This work was supported by "International Information Science Foundation".

References

- [1] R.H.Wang and S.T.Wu, On a problem of rational spline interpolation, Numer. Math. J. Chinese Universities, 2(1980), 78-81.
- [2] R.H.Wang and S.T.Wu, On the rational spline functions, Jour. Math. Res and Exposition, Vol.4, No.2 (1984),31-36