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1. Introduction

The purpose of this paper is to present a kind of finite element
method which is using a B-spline bases of a bivariate spline space.
The method shown in this paper can be used to solve the general
partial differential equations, such that the solution has the pro-
perty of Cl—continuity.

We have used our method to solve the 2-dimensional linear stable
electromagnetic field, and the continuity of flux density has been
guaranteed.

2. Basic theory

Let D be a polygonal domain in R2, and T an arbitrary triangula-
tion of D wirh M vertices. Each triangle of the triangulation T,
says ABC will be subdivided into six smaller triangles shown in
Figure 1, where o is any given interior point in the triangle ABC,
and the point P, Q, and R are obtained by joining O to those given

interior points in triangles

C

of adjacenting to the triangle
ABC respectively.If some edge
of the triangle ABC is a
boundary edge of the triangu-
lation T, says bc, then p may
be any interior point in the
edge BC. The subdivided trian-

gulation of T is denoted by W.

Denote by S%(W) The bivariate
f’f?#‘re 1. spline space

S%(W)={SEC1(W)I the restriction of S to each triangle of W is

a guadratic polynomiall

([11)

Powell and Sabin have shown the dimension of bivariate spline

- -



281

space s%(w):

dim  S3(W)=3M, | (1)

) 5 .
Furthermore, Wang and others([ D have constructed B-spline bases
of the space S%(W).

For any given interior vertex, says Vi’ of the original trian-

4

gulation T, we can construct 3 B-splines [Bil)(x,y), Béz)gx,y)
B§3)(x,y)] which are supported on the polygonal domain vil"'vini

(see Fig.2), where each of Vij(j=1'2""'ni) is neighbour vertex

around V; in T. It notes that each i. (1,...,M). All B- splines

J
M R
[B ( )(X,y), B(z)(x Y) . B{3)(X,y)Ji=1 satisfy the following prop-
ert1es(1,3=l,2,---,M).

B; (vj)_sij, B (vj) 0, B (vj) o,
3 »(2) - 9, (3) -

3B (1)(v )=0, 23 Bi?) (vy)=8, 5 22847 (v =0, (2)
3 95 (3) (v )2

a% Bt (v)=0, o B2 (V5 =0, syPi (V3)=045.

It is clear that [B (1), B(z), B(3) ]M =1 are linear independent,

therefore they are the B-spline bases of the space S (W)([2])

According to the property of the B-spline, the values of any

function in S (W) on a certain triangle V, V V will only depend
2 W (@ _(3) ;
on B-splines | Bt ’ Bt ’ Bt ]t=i,j,mﬁ Therefore we only need

to show how to represent the B-spline on a triangle ViV.V .

By using the " smoothing cofactor - conformality condition"
method proposed by~wang([3]) and a coordinate transformatoin ,
we can get the representation of the B-spline:

By ey =(2r 1l 5 )

(2) _ 2

(x,y)= 11 1mj (x,y)
3 2
( )(XIY)" 12 lmj (XIY)

(1)(X,y)—(J_+l)l (X.y)+K 1 (x,y)

=(2) _
Bi (x,y)= Kil lmj(x,y)+ Ki4loj(X,Y)

F%?ure 2.

=(3) _
By (xey)= Kyg

2 2
+
1mj(x,y) Kisloj (x,y)
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id

( )(x,y)—B( )(x,y) + K, l (x,y)

i6

;—()
(X.y)—B.14
(3)

_ 2
(x,y)=B; " (x,y) + K, 1olg

;11 " mo

(l)(x,y) B( )(x,y)+ K6 lip(x,y)
§£3)(X'Y)=§iz)(x'y)+ Ki7 lip(x'y) (3)
Eig)(x,y)=§i;)(x,y)+ K. g lip(x,y)
By, o) =B 1 Gy kig12 (,y)
ﬁii)(x,y)= Killij (x,9) + K; 101;0 x,¥)
EFB)(x,y)= K, 12j (x,y) + K, l2 (x,y)

—( )
Bi5 (x,y) + Ki7lOq (x,v)

g{3)

i5 (x,y)

where the coefficients Ki,t depend on the coordinates of the ver-
tices. ‘
3. Linear stable electromagnet

The problem on linear stable electromagnet is to solve the e-

quation

D: H(BFPT so(BEP==T

Sl: u=u, (4)

. pou _
Syt By = “Hy -

The above problem is equivalent to finding a function u which
satisfies the following variational problem

{W(u)=ffD B2+ (3?2 tax ay -7/ 0u axdy =in.

S.: u=u (5)

1 0"
By using the B-spline bases to construct the shape function
defined on a triangle element e, we obtain a piecewise guadratic

polynomial of satisfying interpolation conditions:
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(1)

Ue (%,y) =u;Bj (2)

(x,y)+u, B, (X.y)+ui2B£3)(x,y)

il
(1) (2) (3)
+uj J (x,y)+ule] (x,y)+uszj (x,y) (6)
(1) (2) (3)
+umBm (x,y)+um1Bm (x,y)+um2Bm (x,v)

=lul-BG,I1T,

o _
where [u]-[B(x,y)] donotes the inner product of the vectors u and
the transpose of B(x,y).

3 L(2) (3)

%ég =ui3 Bj (x,y)+uj1l Bi® (X,¥)+u 12%— (x,7)
%_B( )(x y)+us 13_3‘1)(x,y)+u32a_3‘3)(x,y)

(1) 3 L(3)

(7)
+um%‘Bm ‘Xry)+um1§ B’ (6, ¥) +upp=By ™’ (x,y) |

=[ul - % B(x,y)1" ,

similarly,

aue_ 9 T
3y —[u]-[§§B(X,Y)] . (8)

Hence, the energy functional on the element e will be

We () =/ 1 1513 %+ (3% %1 -gu axay

_ B ] 9
=I5 -l (5B (2, 7)1 (B (x,9) 1T (9)

+(58 00,y 1428 0,y) 1) - u) =0+ [u] - (BGe,y) | dxdy.

According to the variation principle, In order to obtain the solu-

tion of (9), we need only to solve

(1)

[K(B(l) (1)) 1+K(B£2), B(l)) lX+K(B(3_.) (l)) ujy]=pP(B57")
j=11213l 1=1,2,3 (10)
It is denoted simply by
k1°l® =[p1°, (11)
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where
&) ol (x, .in)
(r,n) 85 38{ BBK 351

K, 1 =BI[D 3§L’ax + 3y 'ag ]dxdy.

k,1=i,j,m; r,n=1,2,3. (12)
1

Pp,1 =ffo JB}(1 )(x,y)dxdy,

h=i,j,m; : 1=1,2,3. (13)

As a whole, the equations on the B-splines finite element method
will be

m
Sk, 8i)u; wef?, 8 )upexef?

(=1

o By 1=p i),

1=1,2.3; §=1,2,+-,n. (14)
The matrix of coefficients is

Ne
Kl = = [Kle : (15)
e={

To deal with the coercive boundary conditions, we can get a
modified equations. By means of the numerical method on linear
equations we can find the potential function u(x,y) at each dis-
crete point (x,y).

The flux density B on the element e is

- 0UYe., odUe 4,
BEay Yax (16)

Substituting (7) and (8) into (16), we have the relation

Slu] -l A Tortalor sy
B =[u]-I[ = B(x,y)] -j+[ul-I[ axB(x,y)] i

(17)
Because of B(x,y) is a piecewise quadratic polynomial ,it is

clear that the flux density B will be continuous.

-5
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