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“XACT PENALTY FUNCTIONS in £-PROGRAMMING PROBLEMS

HEAY HARBY # 1 — % (Kazunori Yokoyama)
1. Introduction

In the theory of mathematical programming, the situation where the
>ptimal solution is taken to be "exact" has been concerned. In
sontrast to this situation, the situation where the optimal solution

1

is taken to be "g-approximate" has been studied recently in [2-51].
Such situation is of interest from the theoretical point of view as
vell as the computational one.

P.Loridan and J.Morgan [3] showed some results about such

'g-approximate” optimal ‘- solutions for the nonlinear programming

>roblem by using the classical pénalty function and the exact pénalty
'unction. In the convex programmming problem, Bertsekas [1] gave the
ronditions to yield the "exact" optimal solution by estimating the
size of the penalty parameter of the exact.penalty function in terms
>f the optimal Lagrange multipliers.

In this note we show several cOnditions to obtain "g-approximate"
yptimal solutioﬁs for the nonlinear programming problem by estimating
:he size of penalty parameter in terms of "g-approximate" optimal
solutions for the dual problem. Also we study the relations among the

'g-approximate”" optimal solution for the convex programming problem,

;agrange g-multipliers set refered to [5], and the penalty parameter.

'!. Preliminaries
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Let f, Eyscore , £ R™ - R be real-valued functions defined on R"™

- consider the nonlinear programming problem (Primal Problem):

minimize f(x)

")
subject to gl(x) < 0,ecc-- , gm(x) < 0.
We denote the feasible set {x € Rnlgl(x) < 0,-+-, gm(x) < 0} by K.

We recall that the dual problem of (P) with respect +to the

nstraints g.(x) < 0 is:

)) maximize ()
where A= Xyt ox ) € R",
ew(x) = inf L(x,x),
xeR
L) = (B0 % 580 A8 (0 1 a0

he associated penalized problem is:

ep) minimize 0(x,p)
where 0(x,p) = f(x) + p igl max (0,g,(x)),
p > 0.

Throughout this note, we suppose that the following  basic

ssumption is satisfied.

ssumption. The real number g is positive.
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The objective function f is bounded from below.
The set {x € lew(x) > Qm} is nonempty.

The feasible set K is nonempty.

ark. With this assumption, the "exact" optimal solution is not
agsarily attained for the problem (P). However, there exists x € K
1 that f(x) < inf {f(x)|x € K} + &. So, we shall be interested in
1 points. Furthermore, the "exact" solution for (D) (resp. (Gp))
not necessarily attained, but there exists a1 > 0 such that eo(x) =

n w(x) - g (resp. x € Rn such that 0(x,p) < infn 6(x,p) + €).
xeR
y means of the above Remark, we define g-solutions for (P), (D)

(Gp),»respectively.

inition. If x € K satisfies f(x) < inf {f(x)|x € K} + g, we say

t x is an g-solution for (P).

inition. If x € Rm satisfies w(x) = sup_ o(r) - g, we say that 2x
, Ax€eR '

an g-solution for (D).

inition. If x € R™ satisfies 8(x,p) < infn 9(x,p) + £, we say that
x€eR

s an g-solution for (ep).

define another solution concept for (P).

inition. An element x is said to be an almost g-solution for (P) if
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the following conditions are satisfied:
(1) x € K8 where Kgiz {x € Rnlgi(x)‘s g, 1. <1 < m},

(2) f(x) < inf {f(x)]lx € K} + &.

3. Characterization of g-solutions

We charagterize‘e—solutions for. (P) by estimating the siée.of_the
penalty parameter of the exact penalty function in tgrms of the
g-solution fér (D). We assume neither the solvability of (f)_norv(D),

Now we introduce two assumptions:
Assumption (A1) . The functiéns f and g (1 < i < m) are convex.

. Assumption -(A2). The set {x € Rnl gi(x) < 0 for any i} is nonempty.

Remark. The assumption (A2) 1s called the Slater constraint

qualification. With (Al) and (A2), the duality gap ¥y (= inf {f(x)|x €

K} - sup, w(x)) is equal to zero and there exists an "exact” optimal

X€R o
solution for (D) which is calledvthe optimal Lagrange multiplier.

The following proposition gives the necessary condition to obtain

an g-solution for (P).

Proposition 3.1. Let X be an g-solution for (P). Let pb be defined by

pg = Ixll_,
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re X is an g-solution for (D),

Ixn, = 3axnix;|l.

hen for all p > pg, X is a (2g+y)-solution for (Gp).

ollary 3.1. Assume that (Al) and (A2) are satisfied. Let x be an

oplution for (P) and Py = ninm for some optimal Lagrange multiplier

hen for all p > Pg X is an g-solution for (Gp).

ne following proposition gives the sufficient condition to obtain

almost g-solution for (P).

position 3.2. We set the penalty parameter p as follows.
p =3 + X, + I where X is an g-sotution for (D).
f X is an g-solution for (Gp), then X is an almost g-solution for

>llary 3.2. Assume that (A1) and (A2) are satisfied. Let the

alty parameter p be defined by
p = 2 + IIIIIoo for some optimal Lagrange multiplier Xx.

fF X is an g-solution for (ep)’ then X is an almost g-solution for

1en we consider the convex programming problems, the following

>osition is shown.

josition 3.3. Assume that (Al) is satisfied. If any g-solution for
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(ep) is also an g-solution for (P), then

the origin in R"™ is an g-solution for (D). ..

Remark. Proposition 3.3 says that unless some g-solution for (D) is

zero (and the problem is essentially unconstrained) we cannot obtain

g-solutions for (P) by solving (ep)'

Now we show the relations among the g-solution for (P), e-Lagrange

multipliers set due to J.J.Strodiot et /al.[5], and the penalty

parameter in the convex programming problems.

Definition[5]. A vector x € R" is said to be a Lagrange g-multiplier
for (P) at x if the following conditions are satisfied:

(1) 2, 20 (i = 1,-+, m),

(2) there exist scalars si =2 0 (i = 2,'--, m) such that

| RICOR i3 8. (1;8;) (x)
S (2-2) 120 gib— g < igl x;8;(x) < 0.

(2-1) 0 € 88

We denote the set of all Lagrange g-multipliers for (P)'at X which is

called\the Lagrange g-multipliers sef for (P) at x by LS(X)'

Remark. From [5,Theorem 3.2.]1, if (Al) and (A2) are satisfied and x
is an g-solution for (P), every element of La(X) is an g-solution for

((D).

Theorem‘3.1. Assume that (Al) is satisfied. Consider the following

three conditions:



31

(a) there exists Po such that for any p 2 pg X is an
solution for (Gpj,

(b) X is an g-solution for (P),

(c) the set L8(§) is nonempty, and x € K.

e condition (a) implies (b) and (c).

rollary 3.3. Assume that (A1) and (A2) are satisfied.

/

Then, the three conditions of Theorem 3.1 are equivalent.

ferences
1] D.P. Bertsekas, “Necessary and sufficient conditions for a
penalty methods to be exact*, Mathematical Programming

9(1975)87-99.

2] P.Loridan, *‘“Necessary conditions for g-optimality?®, Mathematical
Programming Study 19(1982)140-152.

3] P.Loridan aﬁd J.Morgan, “Penalty functions in g-programming and
g-minimax problems®, Mathematical programming 26(1983)213-231.

41 E.Rosenberg, “g-Subgradient optimization +techniques in convex
programming and Lagrange duality", Opsearch 23(1986)71-88.

5] J.J.Strodiot, V.H.Nguyen and N.Heukemes, *“g-Optimal solutions ‘in
nondifferentiable convex programming and some related questions”

Mathematical Programming 25(1983)307-328.



