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Microlocal a prior:i estimates and the Cauchy problem

Kunihiko Kajitani ( Univ. of Tsukuba 2% /)
Seiichiro Wakabayashi ( Univ. of Tsukuba Z#k #i—ER)

1. Microlocal a priori estimates.

Microlocal analysis has made a great contribution to the recent development of the
theory of partial differential equations, and many authors have proved that microlo-
cal analysis is a poweful and useful tool in studying partial differential equations. In
particular, it leads us to studies on standard forms of pseudodifferential operators
and clarifies essential parts to be analyzed. However, for general problems one only
obtains results modulo C*°. To remove “modulo C*®” one must make an effort accord-
ing to the problems. In the studies of the Cauchy problem one must distinguish the
time variable from other variables, and only limited application of microlocal analysis
was permitted. Our purpose is to show that microlocal analysis is fairly applicable
to the studies of uniqueness and well-posedness of the Cauchy problem. In [7] we
showed that microlocal a priori estimates ( Carleman type estimates) give theorems
on propagation of singularities. Here we shall show that similar microlocal estimates
also give theorems on uniqueness and well-posedness of the Cauchy problem. Let

P(2,€) = " + Xoj<m,ar<m 2a(2)E%, Where aq(z) € C®(R™).
Microlocal a priori estimate at 2% € S*R*(~ R" x §"~1) (0 < A < o0)

P(z,¢;7) € ST satisfies (E; 2%, {t,(z,6)}rer, A) <>
I;(2,€) € C°(T*R™\0) (j =1,2) ( pos. homo. of deg. 0), 3l; €R (1< j < 3) s.t.
¥i(2,6) =1ina conicnbd of 2° (j =1,2) and Vr € 7, Vb €R, 1 < 3K < A, Iy >
1, 3C > 0 satisfying

1{D)Foll < C{ll (D)3 Pa(z, Div)o || + || (D)3(1 = $1,u(z, D))o I}

if v € H*(R"), 7 > 70, b = Ky and A(2,£) = (t-(2,€) — b)log(€)(1 — O(4¢|/R))
¥2(2,¢), where O(t) € Cg°(R), ©(¢) =1 (|t |< 1), supp O C (-2,2), ¥1,a(2,§) =
(1-©(|¢]/R))b1(2,€), Pa(z,D;7)v = (e~*)(z, D)P(2, D;7)(e*)(2, D)v, (£)y = (v*+
| £]2)1/2 and || - || denotes the L2-norm.

(P-1) p(=, £) (=the principal part of P(z,£)) is hyperbolic w.r.t. 4 =(1,0,...,0) €
R”

Put P(2, D;7)u = e~7¢() P(z, D)(e7(®)x) for ((z) € B(R™).

(P-2) V20 = (2°,¢°) € S*R™ with 29 > 0 and dp(2°) = 0, V¥° € T'(p(=°,-),9), Vk >
0, dag > 0 s.t. ‘P(z,£;7) for some ((z) which is equal to (z — 2°) - 9° + kx
| 2 — 2% |* near 2° ( resp. *P(2,¢ + iv9)) satisfies (E;2° {aty(2,£2°)}a>a0,0)
(resp. (B;2° {at_(2,£;2°)}aza0) 00),” Where t4(2,6;2%) = £(21 —2d)+ | 2 —2° |?
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+ | &/ | €| —¢° |? in a-conic nbd of 2% T(p(z°,-),?) denotes the component of
{¢ € R™; p(2° £) # 0} containing ¥, and ! P(z, D) denotes the transposed of P(z, D).

Assume that for each 2% = (2%,£%) € S*R"*~! P(z, D) can be written as P(z, D) =
PY(z,D;2z%)--- P*(2,D;z") + R(z,D;z%) in C'(z"), where C'(z") is a conic nbd
of (0,2%) in Rx(T*R™"1\0), 2' = (23,...,2s), ¥ = ¥(z"), P*(2,¢,2") € ST8°
( the coef. of ¢**=1), R(=,¢;2") € N S’l':;,l, a(z,§) € S’l’:;,l &=t g(z,¢) =
25’210 aj(z,8")¢, aj(=,¢') € S;'.';!"" ( classical). Put t! (z,¢';2%) = tz; + 22+
|2 —2% |2 4| ¢/ ] ¢ | ££% |? in a conic nbd of (0,z").

(P-3) Vz¥ = (2¥,£%) € S*R""1, 1 < Vk < v(2¥), IP*(=,¢;2%) € S’l':(',"o ( hyp.
w.r.t. 9, the coef. of ¢ = 1) s.t. (1) P*(z,;2%) = P*(=,£;2%) ((=,¢') € C'(Y),
| € 1> 1). (2) P*(=,&2%) = P*(£&;2%) (= & Q(z*) (CCR™): a nbd of (0,2”)), where
P*(¢;2%) is pos. homo. for | ¢ |> 1. (3) Vz! = (2%,£) € S*R™ with 2! € Q(z%)
and dP(z!;2%) = 0, Jag,af > 0 s.t. “P*(, € — ivd; 2%) ((+)sign) ( resp. P*(z, & +
i79;2%) ( (=)sign)) satisfies (E; 2!, {at+(z,§; 2t) + a'tl (2, ££';2%) log(¢')
x1/10g(€) }a>ao,at>at, 00),” Where Pk(2, ¢;2%) denotes the principal symbol of P*(z, ¢;
).

For 2° €R™ define K3, = {z(t); £t > 0, and {2(t)} is a Lipschitz cont. curve
in R™ satisfying (d/dt)2(t) € I'(p(z(2),-),9)* ( a.e. t) and z(0) = 2°}, where I'* =
{y €R™; y-n > 0 for Vp €T}.

(P-4) K_, N {z1 > 0} is bdd for every z° €R".

Theorem 1. Assume that (P-1)-(P-4) are satisfied. Then Vf € D' ( 1esp. C*)
with supp f C {2, > 0}, v € D' ( resp. C®) s.t. P(z,D)u = f, supp u C {21 > 0}.
Moreover, supp v C {2 €ER"; z € K} for some y € supp f}. ,

To prove Theorem 1 we first derive local a priori estimates ( Carleman type es-
timates) from microlocal a priori estimates. This proves uniqueness of the Cauchy
problem. This argument can be also applicable to operators which are not necessarily
hyperbolic. Next we derive hyperbolic estimates for ¢ P(z, D) from (P-3), which proves
existence of solutions to the Cauchy problem. In deriving hyperbolic estimates the
condition (2) of (P-3) plays an important role. For the detail we refer to [?].

2. The Cauchy problem.

We shall assume that P(z, D) satisfies at least one of the conditions (A),0, (B),0 and
(C),o for 2° € S*R™ with dp(2°) = 0, which will be defined below. Let 2% = (2°,£9)
€ S*R™ satisfy dp(z°) = 0. We say that P(z, D) satisfies the condition (A),0 if (A-1),0
and (A-2),0 below are fulfilled.

(A-1),0 3conic nbd C of z° 3conic nbd C of (v°,1°), Fhomo. canonical transf.
x : C = C, Isymbols ¢(n), e(y,1) s.t. 2° = x(3°,7°), ¢(n): pos. homo. of deg. m' EN
and p(x(y, 7)) = e(y,m)a(n), e(y,n) # 0 for (3,7) € C. |

Let F; and F; be classical Fourier integral operators corresponding to x and x™!
which are elliptic at (y°,7%) and 2°, respectively. Under (A-1),0 we can write

o(F; P(z, D)F1)(y,n) = &y, n)(a(n) + s(y, 7))
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in a conic nbd G of (¥°,9°) if || > 1, where &(y,n) is a classical symbol, which is
elliptic in Co, and s(y,7) € S{',‘;'l is a classical symbol.

(A-2),o 3Cp > 0, 3C, >’0 for Vo s.t.
|8(e) (¥ )| < Cala(m; 9)| for (y,m) € Co with |g] > Co,

where 9 = d,0(0,9), X 1(2,£) = (¥(2,£),7(2,€)) and g(7;¢) = X\ a1<m(—i€)*¢ =) ()
xal~1 for ( € R™.

We note that g(n) is microhyperbolic with respect to 9 at (%° ,1°) ( see [16]). By the
definition of microhyperbolicity we may assume that |q(17,s19)| > es™ for (y,7) € Co

and 0 < 8 < 89, where ¢ > 0 and sp > 0. This implies that d # 0 ( see, also, Lemma
3.2 in [15]). We say that P(z, D) satisfies the condition (B),e if (B-1),0—(B-3),0 below
are fulfilled.

(B-1);0 Jconic nbd C of 2% ZFconic nbd ¢ of (3°,%°), Jhomo. canonical transf.
x : C 5 C, Jreal-valued funs t;(y) € B°(R") (1 < j < N), Jreal-valued sym-
bols '\(y,ﬂ'), a(ya"f)’ e(yiﬂ) and 3C > 0 st. 20 = X('yoi”o)’ 770 = (0’ y0, 1))
2X(3°,5°)(0,9), dx(50,49)(0, V¢;(3°)) € T(p,0,(0,9)) (1 < j < N), Ay, '), e(w,%'):
pos. homo. of deg. 1, 2 ( resp.), p(x(¥,7)) = e(y,M(m(m — A(v,7')) — a(y,7'))
and e(y,n) # 0 for (v,9) € C, A(@°,7") = a(y’,7") = 0, and a(y,7) > 0 and
T(y)aalayl(y) 71') < Ca(ya 77') for (y’ 7") € é's where p,o(tsz) ( '#- 0in éz € Rzn) is de-
fined as p(2%+86z) = s*(p,0(62)+0(1)) when s — 0, I'(p,o, (0,9)) is the connected com-
ponent of {6z € R*"; p,0(6z) # 0} containing (0, 9) ( € R*™), T(y) = mini<;<n |¢;(¥)]
and & = {(3,%'); (¥,7) € C for some n,}.

Let F, and F; be classical Fourier integral operators corresponding to x and x~
which are elliptic at (¥°,7°) and 2°, respectively. Under (B-1),0 we can write

o(F2P(2, D)F)(y, ) = &y, )}{m(m — My, ")) — oy, w) + Blw, )}

in a conic nbd Co of (¥°,9°) if || > 1, where &(y,7) is a classical symbol, which is
elliptic in Co, and B(y, %) € S} 4 is a classical symbol.

(B-2),0 3classical symbol A(y,7') € 574, 3C > 0 s.t.

1

T(y)I9B(y,0,7) — Y _(8*a/By;0m;) (v, 7')/2 — Ay, ') A(w:7)|

i=2

< Clal(y, 7 )/ +1) for (3,7') € &,

We say that the condition (B-3),0 is satisfied if at least one of the following conditions
(B-3-1),0 and (B-3-2),0 is satisfied:

(B-3-1),0 3classical symbol B(y,7') € 574, 3C > 0 s.t.

T(y)|RB(%:0,7') — By, 7 )A(3, 1) < Claly,n')? +1)
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for (3,7) € Cy.

(B-3-2),0 RP-1(z°) < Txt Fp,
where F, denotes the Hamilton map ( fundamental matrix) corresponding to the Hes-
sian of p(z)/2 at z = 2% and Trt F, = Y A, the i}; are the eigenvalues of F, with
pos. imaginary parts.

We say that P(z, D) satisfies the condition (C),0 if the following condltlons (C-1);0
and (C-2),0 are fulfilled:

(C-1),0 conic nbd C of z° 3 conic nbd C of (3°,%"), Jhomo. canonical transf.
x : € 5 C, Jreal-valued funs t;(y) € B*(R") (1< j < N), Ie> 0st. 2° =x(3"9"),
dx(ll"m“)(O’Vti(yo)) € I'(p,0,(0,9)) (1 < j < N),

hm-l(z’ £) 2> Chm—z(zy f)T(z’ 6)2

for (z,£) € C with |¢| = 1, where h4(2,¢) (0 < k < m) are defined as |p(z, ¢ —is?)|® =
>ieo 8 hm—j(2,€) for (2,€) € T*R" and s € R, T(2,£) = minig;<n [tj(¥(2,£))| and
x~ (2, €) = (y(=, ), n(2,¢£))-
(C-2),0 3C > 0 s.t.
|P;(2, )| < Ch?i—m(z’£)1/2

for (2,£) € C with [¢| = 1 and [m/2]+1 < j < m—1, where Pj(2,£) = 3),=; ¢a(2)€*
(0<ji<m-1).

Theorem 2. Assume that (P-1) and (P-4) are satisfied and that at least one of the
conditions (A),e, (B),0 and (C),o is satisfied if 2° = (2°,¢°) € S*R", 22 > 0 and
dp(z°) = 0.Then Vf € D' ( resp. C*) with supp f C {21 > 0}, 3w € D' ( resp.
C>®) s.t. P(z,D)u = f, supp v C {2, > 0} Moreover, supp v C {2 €R”; z €
K} for some y € supp f}.

Theorem 2 can be proved, applying Theorem 1 ( or an improved version) ( see The-
orem 5.2 in [8]). If one finds other conditions to give microlocal a priori estimates
at z° € S*R", one can add these conditions to (A),e, (B),o and (C),o and improve
Theorem 2. The condition (A),e is satisfied if the characteristic roots of p(z,£) = 0 are
involutive and the lower order terms of P(z, D) satisfy the so-called Levi conditions,
which was studied by Zeman [17] ( see, also, [1], [10]). The condition (B),o implies
that p(z,¢) has double characteristics at z°. If P(z, D) is effectively hyperbolic, then
P(z, D) satisfies both the conditions (B),o and (C),o. C* well-posedness of the Cauchy
problem for effectively hyperbolic operators was proved by Iwasaki [6] ( see, also, [3],
[5], [11], [12], [14]). The operators, which was treated by Ivrii [4], satisfy the condition
(B);o with T'(y) = 1 ( see, also, [2]). We can treat both effectively hyperbolic cases
and non effectively hyperbolic cases at the same time by introducing T'(y) in (B),o.
The condition (C),o is closely related to the conditions given in [13]. Some results on
propagation of singularities were essentially obtained in [15] if the operators are mi-
crohyperbolic at z% and satisfy (A),o. For microhyperbolic operators satisfying (B),o
we obtained theorems on propagation of singularities in [13]. Applying the methods
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developed in [7], we can also obtain theorems on propagation of singularities for mi-
crohyperbolic operators which satisfy at least one of the conditions (A),o, (B),0o and
(C);o. For the proof of Theorem 2 and the detail we refer to [9].
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