Negativity and Vanishing of Microfunction Solution Sheaves at the Boundary

By Nobuyuki Tose and Motoo Uchida

(車下,理) (神市,理)

Introduction. Let M be a real analytic manifold with a complex-

ification X. Let V be a \mathbb{C}^{\times} -conic involutive submanifold of $\mathring{T}^*X(=T^*X \setminus X)$, and let \mathfrak{M} be a coherent \mathcal{E}_X -module with constant multiplicity along V. Moreover let Ω be an open subset of M with real analytic boundary $N = \partial \Omega$. The aim of this note is to give vanishing theorems for the cohomology groups of the complex $\mathbb{R}_{\operatorname{Hom}_{\mathcal{E}_X}}(\mathfrak{M}, \mathcal{C}_{\Omega|X})$ where $\mathcal{C}_{\Omega|X}$ is the complex of microfunctions at the boundary introduced by P. Schapira [S].

The vanishing of the complex $\mathbb{R}_{Hom}_{\mathcal{E}_X}(\mathfrak{M}, \mathcal{C}_M)$ has been studied by M. Sato *et al.* [SKK], M. Kashiwara [K] and Kashiwara-Schapira [K-S2], and we study in this talk an analogous problem at the boundary. **Main Theorems.** Let M, X, Ω and N be as in §1.1. Then we give

THEOREM 1. Let $p \in \mathring{T}_M^* X$ with $\pi_X(p) \in N$, and let $V = \{q \in \mathring{T}^* X; f(q) = 0\}$ be given by a homogeneous holomorphic function f satisfying the condition

(1)
$$\{f, f^c\}(p) < 0.$$

Assume that there exists a homogeneous holomorphic function ψ for which the following conditions (2), (3), (4), (5) are satisfied.

(2) $d\psi \wedge \omega_X \neq 0$ at p. (ω_X is the canonical 1-form of T^*X .)

- $(3) V \cap \overline{V} \subset \{\psi = 0\}.$
- (4) $\operatorname{Im} \psi \Big|_{T^*_M X} = 0.$
- (5) $\pi_X^{-1}(\Omega) \cap T_M^* X \subset \{\psi > 0\}$ in a neighborhood of p.

Let \mathfrak{M} be a coherent \mathcal{E}_X -module with constant multiplicity along V defined in a neighborhood of p. Then we have

$$\mathrm{H}^{0} \operatorname{\mathbf{R}}_{\operatorname{\underline{Hom}}_{\mathcal{E}_{X}}}(\mathfrak{M}, \mathcal{C}_{\Omega|X})_{p} = 0.$$

THEOREM 2. Let p, V, Ω be as in Theorem 1. Let $W (\subset V)$ be a C^{\times} -conic involutive variety in \mathring{T}^*X through p with $q (\geq 1)$ negative eigenvalues of $\mathcal{L}_{\Lambda}(W)(p)$. Let \mathfrak{M} be a coherent \mathcal{E}_X -module with constant multiplicity along W defined in a neighborhood of p. Then we have

$$\mathrm{H}^{j} \operatorname{\mathbf{R}}_{\operatorname{\underline{Hom}}_{\mathcal{E}_{X}}}(\mathfrak{M}, \mathcal{C}_{\Omega|X})_{p} = 0 \qquad (j < q).$$

Moreover if $\mathcal{L}_{\Lambda}(W)(p)$ is non-degenerate, then we have the vanishing of the left-hand side for $j \neq q$.

Next we give a generalization of Theorem 1.

THEOREM 3. Let $p \in \mathring{T}_M^* X$ with $\pi_X(p) \in N$, and let W be a \mathbb{C}^{\times} -conic involutive variety of codimension d with $p \in W$ and $\mathcal{L}_{\Lambda}(W)(p) < 0$. Assume that there exists a homogeneous holomorphic function ψ with the properties;

(6)
$$d\psi \wedge \omega_X \neq 0 \quad \text{at } p,$$

(7)
$$\operatorname{Im} \psi \Big|_{T^*_{M}X} = 0,$$

(8)
$$W \cap \overline{W} \subset \{\psi = 0\},$$

(9)
$$\pi_X^{-1}(\Omega) \cap T_M^* X \subset \{\psi > 0\}$$
 in a neighborhood of p .

Let \mathfrak{M} be a coherent \mathcal{E}_X -module with constant multiplicity along W. Then we have

$$\mathrm{H}^{j} \operatorname{\mathbf{R}}_{\operatorname{\underline{Hom}}_{\mathcal{E}_{X}}}(\mathfrak{M}, \mathcal{C}_{\Omega|X})_{p} = 0 \qquad (j \neq d).$$

References

- [K] Kashiwara, M.: Vanishing theorems on the cohomologies of solution sheaves of systems of pseudo-differential equations. Astérisque 2-3 (1973), Soc. Math. de France, pp. 222-228.
- [K-S1] Kashiwara, M. and P. Schapira: Microlocal study of sheaves. Astérisque 128 (1985).
- [K-S2] —: A vanishing theorem for a class of systems with simple characteristics. Invent. Math. 82 (1985), pp. 579-592.
- [SKK] M. Sato, T. Kawai and M. Kashiwara: Hyperfunctions and pseudodifferential operators. Lecture Notes in Math. No. 287, Springer, 1973, pp. 265-529.
 - [S] ——: Front d'onde analytique au bord II. Sém. E.D.P., Ecole Polytechnique, Exposé 13, 1986.