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A dimension formula for the space of the Hilbert

cusp forms of weight 1 of two variables
- Toyokazu Hiramatsu(Kobe)

81,

The dimension of the space of the Hilbert cusp forms has
been calculated in most of the cases, but not yet for the case
of weight 1. 1In this report, we shall talk of some dimension
formula for this remaining case under some restrictions. Funda-
mental references used here are the following:

(1] I. Y. Efrat : The Selberg trace formula for PSLZ(R)n,
Memoirs A. M. S., 1987.

[2] S. Gelbart and H. Jacquet : Forms of .GL(2) from the
analytic point of view, Proc. Symposia in Pure Math.,
33(1979).

[3] H. Shimizu : A remark on the Hilbert modular forms of weight
1, Math. Ann., 265(1983).

(4] P. Zograf : Selberg trace formula for the Hilbert modular
group of a real quadratic alg. n. £f., J. Soviet Math.,

19(1982).

§2.
Firstly we shall introduce some notation:
-5= {z : Ima > 0}, T : real torus

92/= {w = (21,. Z2) ZJG?(J = 1,2)}
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4/={§=(z,¢):ze{/,¢e
6~/2 = {w = (21, 22) éje -g,(j
G' = SL(2, R)Y, ¢' = G'

The operation of o =

x T, G'?2 = ¢ x ¢, a12= al

(01, G2) € @ﬂ

T}

= 1,2)}

is represented as

on {;Z

follows:
o(w) = (0151, Ozgz);
0.8. = (g,, a.)(z, .)
g2g = g a2 (Egs 9y
(L2104 4 arg d.) )
= — ) . arg(ec.z . + ) - O
42 dg Jd d dJ ) d
. ; aj bj : :
or oj = (gj, aj (gj = (Cj dj) € G, qj € T) with g = 1,2.
The G'2-invariant metric on gf is
2 de. + dy . dx .
ds? =} { —L5 + (d¢. - =L )2},
and the G'2-invariant measure d# associated to ds? is given
by
2 dx.dy.dé.
dp = 1 —Lodd,
J=1 J
where zj = xj + V-1 yj (j = 1,2). The ring of G'2-invariant
differential operators on .;F is generated by
? 5~ _ a2 07 32 5 92 3 9 .
g~ » B, = y-( S 2 + 3y 2 ) + [T s Y Y, w5 Y (7 = 1,2).
¢j J ) 7 yj ¢j dJd ¢j xj
A discrete subgr. T of @'2? is said to be irreducible if

' is not commensurable with a direct product

I'n ¢ G, T2 C G2 are discrete, G

G'2 = G; x G,.

ring of integers of F. We put

SL(2, 0,) =

Let F be a real quadratic field and 0

'y x I',, where
and G, are not trivial, and

F be the

((*P) s ad-be=1,a, -, de oy}
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Then the Hilbert modular group associated to F 1is

. a b a' b! a b

T'p = {((c d)’ (e' d')) : (c d)e SL(2, 0p)},
where a’, :--, d' denotes conjugate of a, :---, d respectively.
It is well known that I'n, 1is discrete and an irreducible subgr.;

and that its number of cusps equals the class number #&#(F) of F.

Now, for y = (yi, Y2) = ((Zi Zi), (gz 22)) € T and we f}z,
we put
iy, w) = {(erzy + di)(ezzy + do)} 1.
We say that a function F(w) defined on f}z is a Hilbert cusp
form of weight 1 for T if
1) F(w) 1is holomorphic on f;z,
2) F(yw)) = j(y, w) 'F(w) for all y e T,
3) At every parabolic point «k of T, a constant term in
the Fourier expansion of F(w) at «k vanishes.
We denote by (5(1, I') the space of Hilbert cusp forms of
weight 1 for T and put
dy = dim(B(1, T).

In the following we shall calculate the dimension di for some

r.

Here we give a remark:

Remark 1. For the case of n complex variables ahd weight
r = (py, *++, r_), the dimension formulas have been calculated

n

in the following papers:

Vrj > 2, even : H. Shimizu(1963),

Vrj = 2 " : K.-B. Merz(1971),
ij = 2, n =2 : F. Hirzebruch(1973) by alg. geo. method,
Ve, 2z 2 : H. Ishikawa(1979),



96

Vp, = 1, n = 2 : Our case.

3.  Fundamental lemma

We denote by M. ((ki, A1), (kz2, A2)) the set of all func-
tions f(w) satisfying the following conditions:
(i) f£(@) e L2(T\&*), 1i.e.,

I |fldd < » and fFf(y(@)) = f(H) for all y e T,

1‘\;2

(ii) TFor J =1, 2

(3.1) & () = A5 £(@),

3 L N
(3.2) 'ﬁa‘f(w) = /—f_l-kj f(h)).,

Then the following lemma holds:
Lemma. If T 1is arithmetic, then

dy = aim@ (1, - 3, (1, - 3)).

Out line of proof : Let A be the adele ring of therreal
quadratic field F. Let G, be GL(2, F) viewed as an alg. gr.
over F and G, the adelization of Gp. In the following
Hilbert modular forms may be viewed as automorphic forms on Gy -

Firstly we put

Gpgp = G x G

A Af Ao

Kf : open compact subgr. of qﬂf
Gt = 6r(2, B x 61 (2, B)"

+
I' = G6pn (Kf x G
Then T 1is a discrete subgr. of G:; and we have
h +
Gy = jEIGij(Kf X Goo) (disjoint).
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Let f(w) be a function i1177lr((k1, A1), (k2, X2)). Put

ki k2

£y = e-/:T(k1¢1sz¢2)yl 2y2 2 F(z1, z2).

Then the T'-invariance of f(w) is equivalent to a transformation

law for F(21, 22):

k k
ci1z1 + di } 1_ c232 t+ dj 2

F(yi1z1, Y232) = F(zy, 22)

' X
(de‘t’Y1)2 (detys)*

for all v = (yi, Y2) = ( gi Zi)’ ( Z:)) € T.

Now we put
i -1 +
T. =GN (x.K,x. X Ge) (1 £ 45 h);
B AR JEm
and denote by Mj the set of functions satisfying the conditions
(i) and (ii) for Pj. Moreover denote by M the space of all

Y on G, satisfying the following conditions.

(1) W(ax@fkmt) = e/:T(klel+k262)w(x),

where o € Gp, kf € @f’ k, = (k(Ol), k(ez)) € K_,

k(o) = ((S9eg o) and v zi = ({05 J) (7 D)) stasea> 03

-s1nb cos®H 0 t,
(2) ij = Ajw(j = 1,2) 3 (3) J Iw(g)lzdg'< ®,
| ANA

For x € Gy, we put « = axjkg(a € Gp, k e Kf, g e G;) and
Y(x) = fb(gzo) (z0 = ((V=1, 0), (V/-1, 0))).
Then (f1, '-',fh) + ¢y gives an isomorphism of M; x --- # My,
onto M.
Let Z be the center of G = GL(2) and w character of
ZA/ZF(%AI\ gf)zl. Then we put |
L*(w, ) = {y : Gy » €|y(aaz) = wla)P(x) for all o € Gp

|y(z) | 2dx < o
ZaGp\Ga
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The space @ L*(w, G) contains M. Now we have that L?*(w, G)
W
decomposes as a direct sum (Gelbart-Jacquet [21])
2 _ 2 2 2 .
L°(w, G) = L cusp(w’ @ L Sp(w, @ L7 ontws Gy
where ’ '

chusp(w, ¢) = {ve L*(w, G) :,J V(ng)dn =0 for all g ¢ GA}
Np/Np

{

with N = {(é i)}, L? is the space spanned by x(det g) with

sP
a character x on A" /p* such that x? = w.
Lemma 1.1 The space L2?cont(w, G) does not contain the
eigenfunctions of‘Laplacian Zi —-g £;. (j = 1,2).
J z
Lemma 1.2 If f e M, then F(3;, 3,) is holomorphic.

§4. Modified trace formula

We put %j = (kj’ Aj)(j = 1,2). TFor every invariant inte-
gral operator with a kernel function k(w ; v) on)Tlr(Xl,’XZ),
we have Selberg's trace formula of compact type:

Jf k(i3 3 BYFGIAD = 5O, Ap)F()

2

¥

for fe mF(Xl, A.). We put

K@) = Y k(®s;yd)s
veTl

then we have
(%5 DIFBIAD = KAy, A F(H).
AVS
Denote by T(y) the centralizer of ¥y in r, and‘put ﬁf(y) =
T(Y)\%*. Then it is easy to see that |
K@msyddw = Y ¥ J k(D 3 0 “yo)di
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- [ k(D 5 v5)dD,
{v} Fr oy

where the sum {y} is taken over the distinct conjugacy classes
of T. |

Since our T 1is non compact type its spectrum has a contin-
uous part, and the continuous spectrum can be described by a
family of Eisenstein‘éeries. Using the Eisenstein series, we
shall construct in after seétion a new kernel H, ; then K- Hg

is now a Hilbert-Schmidt kernel. Therefore we have the following

modified trace formula

(1§ s(A89, addy - J (KD 3 B) = Byl s ) }di.

24 : _ :

Now we consider the following invariant integral operator
defined by

1 1
2 up® 5 un® —/TCh. 1)
we(3 ) = T J | — e %%,
j=1 (zj—zé)/Z/—l (gj—zj)/ZV—l

where D = (2}, 2%) and 6 > 1. The integral operator we
vanishes on)TLF(Xl,‘Xz) for all (%1, A2) except ki = kp = 1,

we denote by

i
N

b = (15 A0, (1, 28)), aye 2

1
Hi11 = ((1. - % ), (1, - % )), A( ) _ _

Nf w

the discrete part of spectra, and we put

| daB :dlmjn%(gus).
Then the left-hand side of [#] implies

d

o~ 8

1R, ) -

A
J=‘1 Q‘le OCB aB>

-7 -
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where AGB denotes the eigenvalue of wg in n&r(uae). For the
eigenvalue AaB’ we have

1 S+1y

L e TETET)

aB " 2 m 3

F(8)T(1+5

o |
b (G4 ) T (8- / Ty ) T (G Tug) T (-,

(L) _ 5 : _ 1 . _
where A = rg(rl - 1) - T gnd re =35 f V-1 Uy with 2-—a,/B.

In general, it is known that the series Y d A is abso-
’ a,B=1 oaB aB
b

lutely convergent for ¢ > i, and by the Stirling formula, we see
that the above series is absolutely and uniformly convergent for

all bounded 6 except § =t(2rOt - 1), i(ZrB - 1). Note that

§ = (0, 0) = (A{) 2By = (D) D)y,

§5. Compact contribution

1) Y = 1,.
I div = J b <« (Fp o= T\GD.
Fr¢yy  Fr |

2) vy : totally elliptic.

We put vy = (y1, Y2), and let Cj’ Zﬁ be the eigenvalues of
ij. Consider a linear transformation that maps 6} into the
product of the 2 unit circles, and a fixed point of vy to its

origin. Then
2. - p.

L2, - P. .

Yi% T % L5 R T % s g
— - — J s4),

Y.3. - p. C. 2. - p.

J - J J J J J
where p = (pa1, P2)¢ —5} is the fixed point of y. By a simple
calculation, we have the following contribution from this‘parf:
(8m2)2 ~ co2 23 |

lim §2J(y) = I ——-,
§+0 [TCy) : 2(T)] {y}:elliptic j=1 1 - 2;
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where Z(l') denotes the center of T.
3) vy : totally hyperbolic st. no fixed point of y is a
parabolic point of T. |
The contribution from this part is essential in the case of
weight 1 : We put vy = (yi, Y2). Then there exists some gj inl
G' such that ;
o7 505 = (M3 ,31), Iejl > 1

. g .. -l
Jd d%d AoJ

Let {yi1, Y2} be a system of generators of T(y) and ASE) =

B, A ) (Ia¥ 51, «

1,2) denotes an eigenvalue of '

respectively. Writing a; = pje"lsj and logpj =u110gxg;) +
uzlogkg;) with u, € R, the set of 3z = (z1, 22) such that

0 <uy <1 (2.=1,2),0<6J-<1r (j=1,2)

forms a fundamental domain of T(y) in %}.;

and the contribution from this part is as'follows:

6+1 v
_ A,6+28 4 Ir( 7 ) Y2 2 sgnAj « u(y)
J =z r¢ 32y J (y1ee ni A, +ADY8 Agt
—_— € i= .+ A, A, - A,

where (© denotes a complete system of totally hyp. conjugdcy

classes in I such that none of its fixed pts. is a parabolic
and p(Y) = 4ot (Log (AT ) L1z )
element of T, X = (A1, A2) an eigenvalue of Yk’ Multiply J(y)

by 62 and tend & +to zero, then the limit is expressed by
(8n2)2§g8 72(8), where

2 sgni; -+ u(y)
2(8) = J O g —

, , -1,¢6
{vy} Jj=1 lAj + )\j l l)\j - )\j‘ I

By the trace formula [#], the function 2(8) extends to a
meromorphic function on the whole é§-plane and has a double pdle
at 6 = 0 whose residue will appear in di.

4) vy : mixed
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The contribution from this part also vanishes.

§6. FEisenstein series ‘attached to

For the sake of simplicity, we shall assume that FP ha
only one cusp, i.e., the cusp is at ® = (w, ®).
Let & € ¢, me 2 and T, be the stabilizer of o in

Then the Eisenstein series attached to « is defined by
E(®; s, m) = ) {y(M1(31))y(M2(32))}s
M To T
M=(My,M3)
« e-/:T{¢1+¢z+arg(czl+d)(c'zz+d')}
o n/=1m _ _n/=1m
X }{y(Ml’(zl))}?]'o’ge {y[Mz(z_g))} Z2loge

b

where € denotes the fundamental unit (> 1) of F, y(z) =

_ ,ab _'.a'" b! ~
My = ( ) and M, = (, 5,). E(w; s, m) converges absolut
e d e' d
for Res > 1, and has the following properties:

E(yw; s, m) = E(B; s, m) for vy e Ty

> E=-/TE, G, E=2A,E (j=1,2),
o5 } J . J |
whgrg :

| : i.lft'\ﬁvw/;lmk . m/~1m 5
Moo= (8% o70ge 70 T 1gge V) T W
L n/Im T/~Im _ 5
)\2‘ = (s - W )(3 - 210g€ 1) - I}- N

We put o '
E(w; 8, m) = e‘f1(¢1f¢2)E(ﬁ; s, m).

Then the series E(w; s, m) 1is invariant under the action of
the lattice Ops and therefore has a Fourier expansion of the

form

- 10 -

S

r.

(

Imz,

ely
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E(w; s, m) =} . agly; s, mye2? 1T<k,z>
260
i132'2)
where <&, x> = fiz1 + R2x2, -and /O? is the ‘dual lattice of
Op, i.e., 0; = {0 € F : tr(al0g) € Z}. The constant term
aoly; s, m) 1is given by
**7loge  *“Tioge . . 17° Tioge 1% Z‘log'g
ao(ys;s,m) = yi ° Y2 T ~y(s,m)y, .‘ " Y2
where
' r(s+21’ YPes -1=L 0y L(28-1; -m)
poym) = T Poge " T7lgge PR W
Iy-im 1 ~Ty-im 2 -
’/5 r(s.h2loge'+2,)r(s " 7Toge * 2 )‘ L(Qs, m)
D : disc. of F,
- 1_:_1!2 . i .
E_ple) = él ' loge : Gréssencharacter of F,
L(s, -m) = ¥ sgn(ee')e_p(e)|N(e)| ®
. (e):ideal .in Op
c#0

Now, by using the analytic continuation of the Eisenstein .
series E(w; s, m) as a function of s for s = % + V/-1r(Efrat

[11), we put

I 1% N o , i
B (B3 9) = ——a Jh(w,___;___,mv_ )
S 167/Dloge m=- S 2loge

x E( % +'/:Tr;wm)E(§§/% - /-1r, =m)dr,

where
6+1
. T(z Lyre 2 ’
ha(rl,rz) = {22+6 6 } T( % + /=1r;)
F(6)F(14~7

X
—
~~

N o

- /DT S + AT S - ATy,

- 11 -
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Then the integral operator K - Hg is now completely continuous

on L%(I'\%?) and has all discrete spectra of K.

§7. The trace at the cusp

5) vy : totally parabolic.:
We have the following which is obtained in a similar way‘as
in the elliptic modular case:

lim 1im 6%{J(=) - 2loge-g (0, 0)logyr}=o0,
§-+0 Y-»0

Therefore the contribution from parabolic classes to d, van-
ishes.
6) Y : hyp.-parabolic.

y is conjugate in T to Ym o’
b}

m
€ o
YN Yy o T (0 e‘m)’ (me Z, m=0, ae€ 0p).

N,

r

The common fixed pts. of every element in T(y) is
{oo, __(!__}’

-m m
€ - €

and there exists a T € ' such that

We denote by Ff(Ym D a fundamental domain of F(ym’a). Take
R .

Y >0 and we put
F& = {w = (21, 22) € F oy1y2 S Y, yr'y2' S Y},
F(ym’a) r(Ym,a)

where 1w = w' = (21', 22'); moreover we put

J¥(y) = un? ¥ I wsw 3 Yw)dw.
ray)

- 12 -
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Then the contribution from this part is

Lo g6(2mloge,2mlogef)

1lim 1lim 8%2{J*(y) - 4loge

— . log¥} = 0,
640 Yo m=1 | (M=) (e M= ™) | o

where

o [+
ga(ul,uz) = T}L‘T I I 7;6(1-1,rz)e'/:_f(r1u1+rzuz)drldrz.
7) tr Hdo
By using the Maass-Selberg relation (Efrat [1]), the fol-
lowing contribution may be obtained in a way similar to the

proof of elliptic modular case:

1 3 1
Therefore
1im 62{- X % (0, 0)v( &, o)) = - (sn2)2y( 1, o).
§+0 e 2

We note that y( l, 0) = *1.

Summing up the above results we have the following final

form of di = dn :

. —
d =Ly i 1 — + & Res Z(&) - 1 ¥( 2, 0).
{vy} [T(Yy):2(T)] j=1 1-;;. §=0 .

Here we give a final remark:

Remark 2. For the general case of several cusps, the con-
tribution of the parabolic elements is simply computed separately
at each cusp. But that of the hyp.-parabolic elements is more

complicated, since a typical element fixes two different cusps.

- 13 -



