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1 Introduction
Visualizing information has been one of the main subjects in computer field. Representing
objetcs by diagrams is one approach of visualizing information and its effectiveness is widely
recognized. Recently many graph drawing algorithms have been proposed. Several authors
have studied the problem of producing tidy drawings of binary trees-drawings that are
aestheticaly pleasing and of minimum width. A number of aesthetics have been proposed.

In this paper, we extend this problem to that of general tree structured diagrams. We
formalize tree structured diagrams and modify the aesthetics to apply the problem to the
layout problems of that. Moreover we investigate the complexity of producing drawings of
minimum width under certain constraints which we introduce.

In Section 2 we give preliminary definitions and introduce constraints. In Section 3 we
show the problem is NP-hard under certain constraints.
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2 Preliminary Definitions
Throughout this paper, we deal with a treelike diagram which we called a tree structured
diagram. The tree structured diagram is a general form of various flow diagrams such as
data-flow diagrams, hierarchical program diagrams and entity-relationship diagrams. In a
tree structured diagram each rectangular box(cell) is placed tree-like on the integral lattice.

Definition 1 The tree structure $T$ is defined as follows.

$T=(V, E, r, W, D)$

Where V is a set of cells, $E$ is a set of edges, (V, E) is a ordered tree, $r$ is a rooted cell
in V, $W$ is a width function of $cell:Varrow Z$ and $D$ is a depth function of $cell:Varrow Z$ .

Terms width and depth mean lengths in x-direction and y-direction in this paper.

Definition 2 The placement of the tree structure $T$ is expressed as a function
$L:Varrow Z^{2}$ (the integral lattice).

Where if $L(p)=(x, y)$ then $L_{x}(p)$ and $L_{y}(p)$ are $x$ and $y$ coordinates of $L(p)$ . The pair
(T,L) is caUed the tree structured diagram.

The tree structure $T$ can be viewed as a rooted tree in which each node(cell) $p$ is as-
signed to two attributes $W(p)$ and $D(p)$ . The tree structured diagram (T,L) can be viewed
as a rooted tree in which each noed(cell) $p$ is assigned to four attribute $W(p),$ $D(p),$ $L_{x}(p)$

and $L_{y}(p)$ .

Definition 3 The width of the tree structured diagram Wt(T.L) is defined as follows.

$Wt(T, L)= \max\{L_{y}(p)+W(p)-L_{y}(q)\}$ ,

where $p$ and $q$ are cells of T.

Definition 4 The level of the cell $p$ is defined as the number of edges between $p$ and
the rooted cell.

Definition 5 The function Index( $:cellsarrow$ integers) is defined as follows. If the cell $p$

is a rooted cell then Inedx $(p)=0$ . Else if $p$ is the i-th son of $p’ s$ father then Index $(p)=i$ .

Definition 6 The box area of the cell $p$ is defined by the set Area(p,L).

Area$(p, L)=\{(x, y)|L_{x}(p)\leq x\leq L_{x}(p)+depth(p)$ ,

$L_{y}(p)\leq y\leq L_{y}(p)+width(p)\}$
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Definition 7 Drawing a tree structured diagram (T,L) is the drawing of a straight line
segment joining a point $(L_{x}(p)+W(p), L_{y}(p)+ \frac{1}{2}D(p))$ to a point $(L_{x}(q), L_{y}(q)+ \frac{1}{2}D(q))$

each edge (p,q) (from $p$ to q) in T.

Now we introduce several constraints for drawings of tree structured diagrams. For a
tree $struc’tureT$ , we consider the placement $L$ such that the tree structure diagram (T,L)
has the minimum width under certain constraints. A constraint is a condition for drawing
tree structured diagrams nicely. The following constraints are modifications of binary trees
or added new.

Bl If the level of cell $p$ is equal to that of the cell $q$ and $L_{y}(p)<L_{y}(q)$ then
$L_{y}(p)$ ( $the$ eldest son of q) $>L_{y}$ ( $the$ youngest son of q)

Bl and B4(b) imply that no two edges cross each other.

B2 If $p$ and $q$ are different cells then there is no common part of Area$(p,L)$ and
Area$(q,L)$ .

B2 implies that no cell is placed on the top of the other.

B3 If $T_{1}$ and $T_{2}$ are isomorphic subtrees (each corresponding cells have the same at-
tributes(sizes)) then $L$ must place $T_{1}$ and $T_{2}$ identically up to a translation.

B4(a) In the tree structured diagram(T,L) if cells $p$ and $q$ are brothers then $L_{x}(p)=$

$L_{x}(q)$ .

B4(b) If levels of cells $p$ and $q$ are the same then $L_{x}(p)=L_{x}(q)$ .

B4(c) If the ceil $p$ is the father of the cell $q$ then $L_{x}(q)=L_{x}(p)+W(p)+1$

Note that satisfying B4(c) implies satisfying B4(a), and B4(b) implies B4(a).

B5 If the cell $p$ has $k$ sons $q_{1},$
$\ldots,$

$q_{k}(Index(q;)=i)$ then

$L_{y}(p)=L_{y}(q_{[k/2]})$

B6 If the cell $p$ has $k(\geq 3)$ sons $q_{1}$ , $q_{k}(Index(q_{i})=i)$ then

$L_{y}(q_{j+2})-L_{y}(q_{j+1})=L_{y}(q_{j+1})-L_{y}(q_{j})$

$(1\leq j\leq k-2)$
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Here we define constraints $C_{1}$ $C_{6}$ by composing these above constraints.

$C_{1}=B1\wedge B2\wedge B3\wedge B4(a)\wedge B5\wedge B6$

$C_{2}-arrow B1\wedge B2\wedge B3\wedge B4(b)\wedge B5\wedge B6$

$C_{3}=B1\wedge B2\wedge B3\wedge B4(c)\wedge B5$ A $B6$

$C_{4}=B1\wedge B2\wedge B3\wedge B4(a)\wedge B5$

$C_{5}=B1\wedge B2\wedge B3\wedge B4(b)\wedge B5$

$C_{6}=B1$ A $B2$ A $B3\wedge B4(c)$ A $B5$

3 NP-Hardness
In this section, we prove that the complexity of determinig the minimum width under
constraint $C_{1}$ is NP-hard. Next we can also show that if we omit B6 the problem is still
NP-hard. We can show this analogously to Supowit-Reingold’s method. Our decision
problem $is:For$ a given tree structure $T$ and a $p$ositive integer $M$ , is there a placement $(T,L)$

satisfying $C_{1}$ such that $Wt(T,L)\leq M$ ?
To show NP-hardness of this decision problem, we will a reduction from 3-SAT to the

specific decision problem with $M=81$ . Let

$E=F_{1}\wedge F_{2}\wedge\ldots\wedge F_{r}$

be a Bolean expression over the variables $x_{1},$ $x_{2},$ $x_{n}$ with clauses

$F_{i}=(y+y_{i,3})$

for each $i$ where $1\leq i\leq r$ and $y_{i,j}$ are literals.

3.1 Constraction of a Tree Structure
Let $E$ be a Boolean expression as above. We construct a tree structure $T(E)$ for which there
exists a placement $L$ satisfying $C_{1}$ such that $Wt(T(E), L)\leq 81$ ffl $E$ is satisfiable. $T(E)$

is the form shown in Fig.1. We denote the clause tree structure for $F_{i}$ by $CT(F_{i})$ , where
$F_{1}=(y_{i,1}+y_{i,2}+y_{*3}))$ . $CT(F_{l})$ contains subtree strucutres $LT(y_{i,1}),$ $LT(y_{i,2})$ and $LT(y_{i,3})$

which corresponding to each literal of $F_{i}$ , as shown Fig.2. Notice that all distances of $v_{1}$ and
$v_{2},$ $p_{3}$ and $p_{4}$ and $p_{1}$ and $p_{2}$ can be expaned without violating $C_{1}$ . $LT(y)$ contains variable
tree structure $VT(x_{k})$ for $x_{K}$ . $VT(x_{k})$ is shown in Fig.3. In Fig.3 if $k$ is even $VT(x_{k})$ is
(a.1) or (b.1) otherwise (a.2) or (b.2). If $y=x_{k}$ , LT(y) is as shown in Fig.4. If $y=\overline{x}_{k}$ ,
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$LT(y)$ is as shown in Fig.5. $CT(F_{i})$ is connected to $CT(F_{1+1})$ as follows. Consider the cell
of $LT(y_{i,3})$ labelled $w$ in Fig.4 and Fig.5. We make a straight tail of $(4n+10)$ cells coming
down from $w$ and link them so that the $(4n+10)$ th cell in the tail is the root of $CT(F_{1+1})$ .

3.2 Proof of Satisflablity
We can prove that $E$ is satisfiable iff $T(E)$ can be placed in $Wt(T(E),L)\leq 81$ by the similar
argument of Supowit-Reingold’ proof [1]. Here we omit the detail of the proof.

Hence we obtain the following theorem.

Theorem 1 For a given tree structure $T$ and a positive integer $M$ , the problem of de-
terming the existence of a placement $L$ such tha $Wt(T(E),L)$ is at most $M$ while satisfying
$C_{1}$ is NP-hard. In fact, the specific sub-problem with $M=81$ is NP-hard.

We can also show that the compexity of determining the minimum width under con-
straint $C_{4}$ is NP-hard. To show this, we have only to modify the proof of the case of $C_{1}$

so that if $y=\overline{x}_{k}$ , LT(y) is as shown in Fig.6 instead of Fig.5. Similarly we obtain the
following theorem.

Theorem 2 For a given tree structure $T$ and a positive integer $M$ , the problem of de-
terming the existence of a placement $L$ such tha $Wt(T(E),L)$ is at most $M$ while satisfying
$C_{4}$ is NP-hard. In fact, the specific sub-problem with $M=81$ is NP-hard.

Furthermore we can obtain following corollaries by definitions of other constraints.

Corollary 1 For a given tree structure $T$ and a positive integer $M$ , the problem of de-
terming the existence of a placement $L$ such tha $Wt(T(E),L)$ is at most $M$ while satisfying
$C_{2}$ is NP-hard. In fact, the specific sub-problem with $M=81$ is NP-hard.

Corollary 2 For a given tree structure $T$ and a positive integer $M$ , the problem of de-
terming the existence of a placement $L$ such tha $Wt(T(E),L)$ is at most $M$ while satisfying
$C_{3}$ is NP-hard. In fact, the specific sub-problem with $M=81$ is NP-hard.

Corollary 3 For a given tree structure $T$ and a positive integer $M$ , the problem of de-
terming the existence of a placement $L$ such tha $Wt(T(E),L)$ is at most $M$ while satisfying
$C_{5}$ is NP-hard. In fact, the specific sub-problem with $M=81$ is NP-hard.

Corollary 4 For a given tree structure $T$ and a positive integer $M$ , the problem of de-
terming the existence of a placement $L$ such tha $Wt(T(E),L)$ is at most $M$ while satisfying
$C_{6}$ is NP-hard. In fact, the specific sub-problem with $M=81$ is NP-hard.
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Root of $T(E)$

$1$

Fig.1 Schematic view of $T(E)$ ,
where $E=F_{1}$ A $F_{2}$ A... A $F_{r}$ .

LT(yi, 1) LT $(yi, 2)$ LT $(y|3)$

Fig.2 Schematic view of a clause tree structure $CT(p_{:})$ ,
where $F_{:}=(y_{i,1}+y:,2+y_{*,3})$ .
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(a.1) (a.2) (b.1) (b2)

Fig.3 The variable tree structure $VT(x_{k})$ ,
where if $k$ is even it is $(a.1)$ or (b.1) otherwise (a.2) or (b.2).

$(a\} \{b)$
Fig.4 The literal tree structure $LT(y)$ , where $y=x_{k}$ .
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(a)
(b)

Fig.5 The litaral tree structure $LT(y)$ , where $y=\overline{x}_{k}$ .

$\ovalbox{\tt\small REJECT}_{(a)}’q_{k}$

$\ovalbox{\tt\small REJECT}’q_{k}$

$\{b)$

Fig.6 The litaral tree structure $LT(y)$ , where $y=\overline{x}_{k}$ .
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