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An Estimate on the Rate of Convergence of Viscosity Solutions

for the Singular Perturbation Problems
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§1. Introduction

In this note we shall present a result on the rate of convergence of solutions for the
singular perturbations of gradient obstacle problems. For any € > 0, we consider the

following nonlinear second-order elliptic partial differential equation (PDE);

(L.1) { max{—c?Au, +u. — f,|Du.| —g} =0 in

u. =0 on 0f,
where 2 C RY is a bounded domain and f, g are nonnegative functions defined on 2.
This equation arises in some kind of stochastic control problem (cf. N. V. Krylov [9]).

Our main purpose here is to get the optimal rate of convergence of solutions u, of (1.1).

to the solution of ug of the first order PDE;

-1)0 ¢

ug =0 on Of.

As to the equation (1.1)., many authors discussed the existence and uniqueness of
solutions. (See L. C. Evans [1], H. Ishii - S. Koike [4] and the second author [13].)

On the other hand, the estimate on the singular perturbation problems depend
on complicated PDE or probabilistic techniques (e.g., S. R. S. Varadhan [12], and M.
I. Freidlin - A. D. Wentzel [3]). However, here we shall obtain the estimate of point-
wise convergence by a method easier than those. The method is an application of the
comparison principle for viscosity solutions. (See H. Ishii - S. Koike [5].) Using the
same method, S. Koike [8] has obtained the rate of convergence of solutions in singular
perturbation problems. His result includes the singular perturbations of the obstacle

problems, which are imposed to the unknown function itself.



Finally we give the definition of viscosity solution of general fully nonlinear second

order elliptic PDEs. Consider
(1.2) ' F(z,u(z), Du(z), D?u(z)) =0 in ,

where F is a continuous function on 2 x IR x RY x$V ($V denotes the set of all N x N
real symmetric matrices) satisfying the following ellipticity condition;
F(z,r,p,A+ B) < F(z,r,p, A) forallz € Q, r € IR,
peRY, A,Be$" and B 2 0.

For the function u defined on Q, let u* (resp. u.) be the upper (resp. lower) semi-

continuous envelope of u on ;
w*(z) = lim sup{u(y) | [y — ol <7, y € T},
uy(2) = lim inf{u(y) | ly — 2| <r, y € Q}.

Definition. Let u be a function defined on Q.
(1) » is a viscosity subsolution of (1.2) provided u*(z) < 400 in Q and for any ¢ €

C?(R), if u* — ¢ attains a local maximum at o € Q, then
F(zo, u*(20), Dp(20), D¥p(z0)) £ 0.

(2) u is a viscosity supersolution of (1.2) provided u.(z) > —oco in Q and for any

@ € C%(Q), if u, — ¢ attains a local minimum at zo € 2, then
F(mo, u*(zo), D‘P(mo)’ Dzso(wo)) 2 0.

(3) u is a viscosity solution of (1.2) provided u is a viscosity subsolution and a super-

solution of (1.2)

Remark. (i) In the case of first order PDEs, we can replace C%(2) in (1) or (2) with
C'(9).
(ii) For the details, see H. Ishii - P. L. Lions [6].
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§2. Preliminaries

In this section we shall state our assumptions and shall show the existence and
uniqueness of viscosity solutions of (1.1), and (1.1)o satisfying the Dirichlet boundary
condition. We make the following assurﬁptions.

(A.1) @ CIRY is a bounded domain w1th smooth boundary 9.

(A2) feWh™ (@) and f200n .

(A.3) g € WL (Q) and g 2 6 on § for some 6 > 0.
We denotes by K; and K, the Lipschitz constants of f and g, respectively.
Concerning the existence and uniqueness of viscosity solutions of (1.1). and (1.1)o

satisfying the Dirichlet boundary condition, we have the following Theorem.

Theorem 1. (1) For each € > 0, there exists a unique viscosity solution u. € W (Q)
of (1.1). satisfying the Dirichlet boundary condition.

(2) There exists a unique viscosity solution ug € WH(Q) of (1.1)g satlsfymg the

D1r10hlet boundary condition.

PrROOF: The uniqueness of viscosity solutions follows from the comparison principle
due to H. Ishii - P. L. Lions [6].
Next we show the existence of solutions. We note that by (A.2) and (A.3),

(2.1) wi(z) =0 on Q

is a viscosity subsolution of (1.1). and (1.1)g. On the other hand, P. L. Lions [11] proved
that

(2.2) wo(z) = 3llenafn L(z,y) on £
is a viscosity supersolution of (1.1). and (1.1)g, where

Iz,y) = / 9((s))ds,
~{econa|en=acn-yeom,
£E(s) e (0§s§t),|%’§_1 a.e. s €[0,1] } '
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Thus by Perron’s method there exist viscosity solutions %., ug € C(Q) of (1.1)., (1.1)o

respectively satisfying the Dirichlet boundary condition and
(2.3) 0< u., up < wy on f.

Moreover the form of equations (1.1), and (i.l)o implies that u. and ug are viscosity
subsolutions of |Du| — g = 0 in Q. Hence it follows from M. G. Crandall - P. L. Lions

[2] that u. and ug are Lipschitz continuous on . Therefore we complete the proof. i

Remark. (i) In order to show the comparison principle, it ié sufficient to assume f,
g€ C(Q).

(i) Since g is a bounded constraint for the gradient of u., the sequence {u.}.>0 are
equi-Lipschitz continuous on Q. In what follows K denotes the Lipschitz constant of u,

and Up.

§3. Main result
* This section is devoted to our main result.

Theorem 2. We assume (A.1)-(A.3). Let u., ug be viscosity solutions of (1.1),, (1.1)g
respectively satisfying the Dirichlet boundary condition. Then there exist €0 > 0 and
(> 0 such that

llue — uoll £ pe for all € € (0, &),

where || - || denotes the supremum norm in C(Q).

Before proving Theorem 2, we shall give an example. It shows that the above

estimate is optimal.

Example. Let @ = (—1,1), f(z) = 1 —|z|, and g = 1 on Q. Then we have viscosity
solutions u., up of (1.1)., (1.1)o as follows;

sinh((|z| — 1)/¢)
cosh(1/¢)

up(z) =1 — |2|.

u(z) =¢ +1 -z,



We note that tanhz < 1 and tanhe — 1 (2 — +o00). Thus we get the following

estimate;

||lze — uo)| = |ue(0) — uo(0)] = etanh(1/e) £e for0<e< 1.

ProoF oF THEOREM 2: It is sufficient to prove the upper estimate u, — ug £ pe on
Q because the lower estimate —pue < u, — up on  can be proved similarly. We take

€0 > 0 such that
: g

= 3K,K

and for each € € (0, &), we define

lz — 9>

- pe on ) x

D (z,y) = puc(z) — uo(y) —

where p =1—3K,Ke/20 and g > 0 is a constant to be determined later. Let (z.,y.)
€ Q x ) be a maximum point of the function ®,(z,y). Then ®.(z.,z.) £ B.(z.,y:)

<

and we get

|me - ye|2

c < uO(a:e) - uO(ye)-

Since ug is Lipschitz continuous, we have
(3.2) Ime - yel é K&.

We consider the following three cases.
Case 1. z.,y. € Q.

The function _
1 |z — ye|?
z—*%(”)—; uo(ye)+"—;—+#€

takes the maximum at z.. Similarly, the function

y — uo(y) — {pue(z‘e) - E;—y‘i - ye}
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takes the minimum at y.. Hence regarding u. as a viscosity subsolution of (1.1). and

ug as a viscosity supersolution of (1.1)g, we obtain two inequalities;

63 max{-Der uten - 20, g0} <0,
64 max{uor) — £, 222 g} 20

We claim that 2|z, —y.|/e—g(y.) < 0 in (3.4). To prove the inequality by contradiction,
suppose that 2|z, — yel/e —9(ye) 2 0 in (3.4). Since 2|z. — y.|/pe — g(=.) £ 0 by (3.3),

we get
2 Le — Ye
Cg(ye) £ 2ae — el - Yl < pg(z.).
Thus (A.3) and (3.2) imply that
(1-p)0 < (1 - p)g(y:) £ p(g(zc) — 9(¥e)) £ Kglze — ye| £ K Ke.

Hence we have 3/2 < 1, which is a contradiction. Therefore we obtain the claim.

Thus we get from (3.4)
(3.5) uo(ye) — f(ye) 2 0.
Note that (3.3) implies
(3.6) C etula) - fe) <0
Subtracting (3.5) from (3.6) and using (3.1), (3.2) and (A.2), we have

2N
ue(me) - UO(ye) é 7€+ f(:l’e) - f(y‘é)
< C€+Kf|me — Y|
S Ce.

Here and hereafter C' denotes various constants depending only on known constants.

Hence we obtain

pue(z) — up(z) — pe = B (2, z) £ B (2., y.)
< uE(me) — up(y.) — pe
< (C - pe.

6



Now we choose p > 0 large enough to get puc(z) — uo(z) < pe. Therefore

(o)~ ) < (+ L)

S (p+Ce.

Replacing g with p + C, we have the upper estimate.
Case 2. z. € 0.
Since the Dirichlet boundary conditon of (1.1), and (2.3) imply

|ze — ye|?

Qe(muye) = "UO(ye) - . — pe £0

for any g > 0, we can argue the remainder similar to Case 1.
Case 3. y. € 01.
By the Dirichlet boundary condition of (1.1). and (1.1)p and the equi-Lipschitz

continuity of {u,}.>0, we obtain

2
m —
Qe(me,ye) = pue(me) - 'l"i'_eﬁe_l_ — HE
< ue(z:) — uc(ye) — pe

< (K? - pe.

Thus we get ®,(z,,y.) £ 0 for g = K2. The remainder is also proved similarly to Case
1.

From Case 1 to Case 3, if we choose p > 0 sufficiently large, then we have the
upper estimate; |

ue(z) — uo(z) < pe for all z € Q.

Replacing u. and ug with each other in the above argument, we obtain the lower esti-
mate;

—pe £ u.(z) — uo(z) for all z € 9.

Hence we complete the proof. fi
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Final Remark. Under some reasonable assumptions, we can extend Theorem 2 to the
following equations.

(1) Hamilton-Jacobi-Bellman equation with gradient constraint;

ma'x{Léue"fl)"'aL?ue_fm,l-DuEI_g}A:O n Q’
u5=0 on 89,

where 2 (p=1,--- ,m) are linear second order elliptic operators defined in 2 C RY;
LPy = ——ezaf-’ju,,.,.xj + et uy, + Pu,

and f?, g are nonnegative functions on Q. The corresponding first order PDE is as
follows;
{ max{ctug — f1,--- ,c™up — f™,|Dug| — g} =0 m Q,
up=10 on Of.
(2) Second order elliptic PDE with gradient constrajnt whose principal part is a fully

nonlinear operator;

max{F(z, u.,eDu,,e?D%u.),|Du|—g} =0 in €,
u, =0 on 01,

and the first order PDE;

{ max{F(z,u0,0,0),|Dug| —g} =0 in €,
Ug = 0 on OQ,

where F(z,r,p, A) is continuous on ! x R x RY x $" and nonincreasing with respect

to the variable A € §V.

See the authors [7] for the details.
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