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Approximation of inertial manifolds for
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1. Introduction.

Several of evolution equations, for example, the
Kuramoto-Sivashinsky equation [7]), [17], [20], the Cahn-Hilliard
equation [17], [20] as well as reaction-diffusion equations [7],
(91, [11], [14] have finite dimensional inertial manifolds. The
restriction of those partial differential equations to the
inertial manifold reduces to finite ordinary differential
equations. An inertial manifold for an evolution equation ié a
smooth and positively invariant manifold under the flow which
also attracts exponentially all orbits. Therefore, the long-time
behavior of solutions.of a partial differential equation
possessing an inertial manifold is completely determined by the
finite system of ordinary differential equations.

This note discusses the existence and the convergence of
inertial manifolds for approximations to the semi-linear
evolution equation in a Banach space Y

du(t)/dt = Au(t) + F(u(t)), t>0
where A is the infinitesimal generator of a Co—semigroup {S(t); ¢t
20} on Y, while F is a nonlinear operator. The approximationé to
the evolution equation considered here are associated with
Chernoff’s product formulas (see [2]).
2.vMain results.

Let X and Y be Banach spaces with norms l-ll and ||,



62

respectively, such that X is continuously embedded in Y. Let
{S(t); t=0} be a C_-semigroup on Y and F € Lip(X,¥) n ¢ (X,Y).

Consider the following semilinear evolution equation
(2.1) du(t)/dt = Au(t) + F(u(t)), t =20,

(2.2) u(0) = X,

where A 1s the infinitesimal generator of {S(t)}. It has been
recently shown by several authors (e.g. see [3],[6];[7].[14],
[16]1) that (2.1) has an inertial manifold M under certain

assumptions. More precisely, the following assumptions are

considered:

(S1) There are constants M > 1 and @ > 0 such that |S(t)yl

< Memtlyl for t 2 0 and y € Y.
(S2) S(t)Y ¢ X for 't > 0 and S(t)x € C([0,«);X) for x € X.

(S3) Y = Y1 + Y2 and Pis(t) = S(t)Pi for i = 1,2 and t = O,

where Y1 1s a closed linear subspace and P1 is a projection from

Y onto Yi'

(S4) {S(t)Pi; t 2 0} forms a uniformly continuous semigfoup on

1
(S5) There exist constants o, 8 > 0, y € [0,1), n < -max{a,B}

and Ml’ M2, M3, M4 = 0 such that

(2.3) le s ctyp,y1 < My, t<o0,yevy,

(2.4) le ™" 's(t)p ¥l < MyeCiyI, t<0,ye€Y,

(2.5) ue'"tS(t)szn < M3e’8tnxu, t >0, x € X,
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(2.6) ne‘"tS(t)szu < (Mgt™Y M4)e"3t|y|. t>0,y €Y.

We note that the above assumptions ensure the unique mild

solution u(t;xo) € C([0,»); X) of (2.1) and (2.2) for each xo € X

(e.g. see [18; Chapter 6]). Under the assumptions (S1)-(S5), Chow

and Lu [3] proved that if

M1M3K(u.B)L1pF

(2.7) K(a,8)LipF < 1 and 1 - K(o, B)LIpF <1
where
(2.8) K(a,8) = BiMat + Mor(1-v)87 "1+ My 871y

then thefe exists an inertial manifold M for (2.1) satisfying
(a) M= { &+ h(E); & € Y,} for some h € Cl(Yl, P,X),

(b) if x,, € M then u(t;xo) € M for all t > 0,

0

(c) for each x *

0 € M such

0 € X there exists a unique element x

that
-nt . - cx® o
Sup, ., € Hu(t.xo) u(t.xo)ﬂ < o,
Let {C(l)}1>0 be a family of bounded linear operators in.Y.
We now consider the following type of approximation to (2.1)

(2.9) X

.

n+el = C(A)Xn + lJv(A)F(Xn)’ n = Q,

where 2 > 0, v € C(R+,B+) with v(0) = 0, and Jv = (I - vA)_l, the

resolvent of A. We shall make the following assumptions on the

family {C(x)}:

(C1) There are constants M > 1 and @ > 0 such that IC(A)nyI <
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Memnllyl‘for A >0, n=20andy €Y.

1

(C2) lim o (1 - ey - 1)y - g,y in Y for each y € Y

and h > 0 sufficiently small.

(C3) C(A)C(m) = C(m¥C(A) and PiC(A) = C(J,)Pi for x, o > 0
and i = 1,2, where Pi is a continuous projection from Y onto Y1

satisfying Pl + P2 = 1.

1

(C4) [C(A)Pll_ € B(Y,) for x > 0.

(C5) There exist constants o, 8 > 0, y € [0,1), n < -max{a,B}

and M;, M,, Mg, M, 2 0 such that

(2.10) Iehnl[C(A)Pll_nPlyl < Me” My,

(2.11) 1" (P 177yl < Mye iy,

(2.12) le ™Ac () P xl < Mge PP ruxi,

(2.13)  1eT™Ac()M,, Pyl < (My((ne)) Y« M pe By

for n 20, x € Xand y € Y.

Our first result is the following
Theorem 2.1. Assume that (Cl1l)-(C5) are satisfied. If F €
Lip(X,Y) n c}(X,Y) and (2.7) holds, then for all sufficiently
small A > 0 .there exists a manifold M’1 satisfying
_ . ' 1
(a)/1 Mx = { E + hl(ﬁ), E € Yl} for some hx € C (Yl'PZX)’

(b)l if X0 €EM then xn € M)L for all n > 1,

l9
*

€EM

(c). for each X € X there exists a unique element xO M,

A
such that
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-nnx ' *
- < ™
sup e Ix, - x I <=,

nzo0

*

where {x;} is the sequence defined by (2.9) with initial X,

instead of Xg-
The second result concerns the stability of inertial
manifolds for (2.1) with respect to the approximation (2.9).
Theorem 2.2. Assume that (S1)-(S5) and (C1)-(C5) are

satisfied. If F € Lip(X,Y) n CY(X,Y) and (2.7) holds, then
limxlo th(ﬁ) - h(&)I =0 for & € Yl’

and the convergence is uniform with respect to £ belonging to
each compact subset of Yl' Here hl and h are the functions

appearing in (a))~ and (a), respectively.

As an application of the above theorems we shall consider

the family
(2.14) C(a) = (I + (1-8)2A)(I - @A) 1

In this case (2.9) with v(x) = 0x is written as

(2.15) ANy, - ox) = AGGX .+ (1-8)x ) + F(x)

Theorem 2.3. Let @ = 1. Suppose that {S(t)} satisfies

(S1)-(S5) with a < -n - WAP_ I . Then the family {C(x)}
, 1'L(Y,)

" defined by (2.14) satisfies (C1l)-(C5).

Theorem 2.4. Let 1/2 < 0 < 1. Suppose that {S(t)} satisfies

(S1)-(S5) with M = M, = 1 and o £ -n - |AP

3 If X and Y are

I .
1 L(Yl)
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Hilbert spaces, then the family {C(x)} defined by (2.14)

satisfies (Cl)-(C5).

1 can be regarded as

a bounded linear operator in Yl' By combining the above theorems

Remark. Condition (S4) implies that AP

we can conclude that the approximation (2.15) possesses an

inertial manifold which converges to the original one for (2.1).
When 6 = 1, this resulf has proved by Demengel and Ghidaglia [5]
by a different method. When 68 = 1/2, (2.15) is called the scheme
of Crank-Nicholson in Hilbert spaces. We do not however known if

(2.14) with 8 = 1/2 satisfies (Cl)—(pS).

Conversely, we consider the problem about the existence of
inertial manifolds for (2.1) when the approximation (2.9) |
possesses an inertial ﬁanifold. |

Theorem 2.5. Assume (C1), (C3), (C4), (C5) and the
following conditions:

(X) X is densely and continuously embeded in Y and X is

reflexive.
(c2)* There exists a dense subset D of Y such that

lim 1_1(C(x)y - y) = Ay exists in Y for y € D,
240 ’

(I - AOA)D is dense in Y for some Ao > 0, and Y1 c D.

Then the closure A of'A generates a Co—semigroup {S(t);t =2 0} on
Y satisfying (S1)-(S5).

The proofs of the above theorems will be given in [12].
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3. Examples.
In this section H denotes a Hilbert space with norm |-|. Let

A be a nonnegative self-adjoint operator in H. {S(t)} denotes a

1

Co—semigroup on H generated by -A. Suppose that (A + xI) ~ is a

compact operator for some X 2 0. Then, the eigenvalués X, of A +

J
A1 satisfy

0<1’1$1’2$n00$x £ +0¢ = o asj_)m

J

and the corresponding eigenvectors eJ form an orthonomal basis of
H. We note that the eigenvalues lj of A is equal to X I X.

Let N > 0 be an integer and P1 be the projection from H into

span{el,,~-~ , eN} and P2 =1 - Pl' Let A = A + xI. Then, for

each y € [0.1) we have the following properties:

—ayt
IAYs(t)P xI < 3F e N Ixl, t <0, x €H,
“ay.qt
IP,S(t)xl < e V1 ixl, t 20, x €H,
“ANent

Y -Y ~¥
IA S(t)szl s)(t + 1N+1) e Ixl, t > 0, x € H.

Let Y = H and X = D(A?) be the Hilbert space with the graph

norm. 1T we set n = -(AN+1 + AN)/2. o =8 = (a - AN)/Z, M=M

N+1
then the hypotheses (S1)-(S5)

1

- - -G 4 -
= M3 =1, M2 = AN and M4 =

in Section 2 are satisfied. Moreover, we have that (AP

~¥
AN+1°
] <
1'L(Y,)
JLN.

Consider an evolution equation

(3.1) du/dt + Au = R(u), t > 0, u(0) = X,

in the Hilbert space Y, where R € Cl(X,Y). Suppose that the

following conditions (i) and (1i1) are satisfied.

- 7 -
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(i) There exists a closed subset D of X such that for each xb
€D (3.1) has a unique mild solution u(-;xo) € C([0,=);D).
(ii) For each X, € D there exists T = To(xo) > 0 such that

HU(t:xo)Hx < p for all t 2 To, where p is a positive constant

independent of X,

Then, the following modification

(3.2) du/dt + Au = F(u), t >0, u(0) = x
with
F(u) = GS(HuHX)R(u), 0 <g < 1/2p
6.(s) = 8(s/e), B €Co(R), 0<0x<1,

0(s) = 1 for Is] <1, ©6(s) =0 for Is| = 2,

provides the same asymptotic behavior as t - « on D. Since the
norm of X is smooth, F € Cl(X,Y) Nn Lip(X,Y). Therefore, we can
" apply our theorems in Section 2 to (3.2). In this case the

condition (2.7) holds true whenever

-1

(3.3) Y N - 0 as N » o,

ANe1ANey ~ 2

Thus we have

Theorem 3.1. Let A and R be defined as above. Assume that
(i) and (ii) are satisfied. If (3.3) holds, then (3.1) has an

inertial manifold MD in D, i.e.

(A), M, = {¢ + h(§); & € P,D} for some h € Cl(PlY, P,X) .

(b), If X, € Mj then u(-;x;) € My for all t > 0.

*
(c)D For each X, € D there exists X, € MD,such that
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sup. o e MUlu(tix ) - u(tix])ly < =

Moreover, Theorems 2.2-2.5 apply to (3.1) in D.

Example. (The Cahn-Hilliard equation)
Let Q be a bounded domain in Bd. d < 2. We consider the

following equation

(3.4) u, - A( -Au - ou + pud) = o in Q x /"
(3.5)" u(+,0) = u () in Q

and 4

(3.6)n n du/9n = JAu/dn on 8Q x R, if 80 1is smooth
or

(3.6)p u(x + Znei,t) = u(x,t) on Q x R°, if Q = [—n,n]d

where ¢ and 8 are positive constants, n is the unit vector normal

to 30 and ey is the canonical basis of ﬂdL

Set A = Az with D(A) = {u € H4(Q); u satisfies (3.6)n or

(3.6)p}. Then, the operatér A=A+ 1 in LZ(Q) satisfies the
properties stated above. Let Y = LZ(Q), X = D(Al/z) and R(u) =
A(-ou + Bu3). It is easy to see that R € Cl(X.Y). For each p > O

we set

D = {u € X; If udx | < p|Q] }.
Q .

It is proved in [17, Proposition 1.1] that the set D satisfies

4

(i) and (ii). The eigenvalues A,, of A satisfies x,, ~ N as N -

N N
o if d = 1, which implies that (3.3) holds with ¥ = 1/2. Hence,

Theorem 3.1 applies to (3.4) with (3.6)n or (3.6)p ifd=1. If d

= 2, then 2, ~ N2 as N » «, which does not impliy (3.3) in

N
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general. We know, however, that the eigenvalues “j of -A with the
periodic boundary condition (3.6)p have the form

L2 2
”j = kl + k2
where k1 and k2 are integers. It follows from [19] that there is

a subsequence {Nk} such that My + o as K - =,

k+], - “Nk

Since AJ ~ u? as j = », (3.3) (with ¥y - 1/2) holds true for N =

Nk‘ Consequently, Theorem 3.1 applies again to (3.4) with (3.6)p

wheﬁ d = 2.

We can also treat the Kuramoto-Sivashinsky equation, a
modified Navier-Stokes equation and a reaction-diffusion equation
(see [12]).
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