射影空間内の点の配置とtheta関数。

九大 理 松本 圭司 (Keiji Matsumoto)

In this note, we announce a structure theorem on the graded ring of modular forms on the bounded symmetric domain of type $I_{2,2}$ with respect to the principal congruence subgroup of level (1+i). Relations between the period map of certain K3 surfaces, the hypergeometric functions and the present theorem have been studied in [MSY2].

We first explain the classical model, which prepares the understanding of our case. Theta functions $\vartheta\begin{bmatrix}a\\b\end{bmatrix}(\tau)$ on the upper half plane $\mathbb{H}=\{\tau\in\mathbb{C}\mid \text{Im }\tau>0\}$ are defined by

$$\vartheta\begin{bmatrix}a\\b\end{bmatrix}(\tau) := \sum_{n\in\mathbb{Z}} e[(n + \frac{1}{2}a)^2 \tau + bn],$$

where $\tau \in \mathbb{H}$, $a,b \in \mathbb{Z}$ and $e[x] = exp(\pi i x)$. These functions have the following properties:

(i)
$$\vartheta \begin{bmatrix} a+r \\ b+s \end{bmatrix} (\tau) = \exp(\frac{1}{2}\pi i b \cdot r) \vartheta \begin{bmatrix} a \\ b \end{bmatrix} (\tau)$$
, where $r, s \in 2\mathbb{Z}$,

(ii) if $a \cdot b \notin 2\mathbb{Z}$, then $\vartheta \begin{bmatrix} a \\ b \end{bmatrix} (\tau)$ vanishes.

By the properties (i) and (ii), it is enough to consider only three theta functions $\vartheta\begin{bmatrix}a\\b\end{bmatrix}(\tau)$, where $a,b\in\{0,1\}$ and $a\cdot b=0$. The group $SL(2,\mathbb{R})$ acts on \mathbb{H} by

$$g \cdot \tau = (A\tau + B)(C\tau + D)^{-1}, \quad \tau \in \mathbb{H}, \quad g = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \in SL(2,\mathbb{R}).$$

Let $\Gamma(2)$ be the congruence subgroup of level 2:

$$\Gamma(2) = \{g \in SL(2,\mathbb{Z}) \mid g \equiv I_2 \mod 2\}.$$

<u>Definition</u>. A holomorphic function f on $\mathbb H$ is called a <u>modular form</u> of <u>weight</u> k <u>relative to</u> $\Gamma(2)$, if the following condition is satisfied:

$$f(g \cdot \tau) = \left\{ \det \left(C\tau + D \right) \right\}^k \ f(W), \ g = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma(2).$$

Let $\mathsf{Mod}_k(2)$ denote the vector space spaned by modular forms of weight k relative to $\Gamma(2)$ and let

$$Mod(2) := \bigoplus_{k \ge 0} Mod_k(2)$$

be the graded ring of modular forms relative to $\Gamma(2)$. It is well known that

$$\vartheta\begin{bmatrix}a\\b\end{bmatrix}(\tau) \in Mod_2(2)$$
,

where $a,b \in \{0,1\}$ and $a \cdot b = 0$, and that these functions satisfy the following relation:

$$\vartheta\begin{bmatrix}0\\1\end{bmatrix}(\tau) - \vartheta\begin{bmatrix}0\\0\end{bmatrix}(\tau) + \vartheta\begin{bmatrix}1\\0\end{bmatrix}(\tau) = 0.$$

Let $\Gamma(2)$ be the compactification of the quotient space $\Gamma(2)$. We define a holomorphic map ϕ of $\Gamma(2)$ into the complex projective plane \mathbb{P}^2 by

$$\phi: \ \tau \ \mapsto \ \left[\vartheta\begin{bmatrix}0\\1\end{bmatrix}(\tau), \ \vartheta\begin{bmatrix}0\\0\end{bmatrix}(\tau), \ \vartheta\begin{bmatrix}1\\0\end{bmatrix}(\tau)\right].$$

By the above relation, the image of ϕ is included in a line in \mathbb{P}^2 , which will be denoted by X. Moreover, the map ϕ gives an isomorphism between $\Gamma(2)$ and X ($\cong \mathbb{P}^1$). This fact implies that the graded ring Mod(2) is generated by $\vartheta\begin{bmatrix}0\\0\end{bmatrix}(\tau)$ and $\vartheta\begin{bmatrix}0\\1\end{bmatrix}(\tau)$.

Next we explain our case. A classical bounded symmetric domain of type $\ I_{2,2}$ is defined by

D := { W =
$$(w_{jk})$$
 1 \leq j, k \leq 2 | $\frac{W - W^*}{2i} > 0$ }, where $W^* = t\overline{W}$.

The group Aut(D) of automorphisms of D is generated by U(2,2) and T, where

$$T(W) = {}^{t}W,$$

$$U(2,2) = \{g \in GL(4,\mathbb{C}) \mid g^* \mid g = J, J = \begin{bmatrix} 0 & I_2 \\ -I_2 & 0 \end{bmatrix} \},$$

which acts on D by

$$(g \cdot T^{j}) \cdot W = \{A(T^{j} \cdot W) + B\} \{C(T^{j} \cdot W) + D\}^{-1},$$

where $W \in D$, $g = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in U(2,2)$, $j \in \mathbb{Z}_2 := \mathbb{Z}/2\mathbb{Z}$; hence we have

Aut(D)
$$\simeq$$
 U(2,2) \times \langle T \rangle , \langle T \rangle = {id, T}.

We define theta functions on D as follows:

$$\Theta\begin{bmatrix} a \\ b \end{bmatrix}(W) := \sum_{n \in \mathbb{Z}[i]^2} e[(n + \frac{1}{1+i}a)^* W (n + \frac{1}{1+i}a) + 2Re\{(\frac{1}{1+i}b)^* n \}],$$

where $W \in D$ and $a,b \in \mathbb{Z}[i]^2$. These functions have the following properties:

(i)
$$\Theta\begin{bmatrix} a \\ b \end{bmatrix}(W) = \Theta\begin{bmatrix} a \\ b \end{bmatrix}(^tW)$$
,

(ii)
$$\Theta\begin{bmatrix}\delta a\\ \epsilon b\end{bmatrix}$$
(W) = $\Theta\begin{bmatrix}a\\ b\end{bmatrix}$ (W), where δ and ϵ are units of $Z[i]$,

(iii)
$$\Theta\begin{bmatrix} a+r\\b+s \end{bmatrix}$$
 (W) = $\exp(\pi i \operatorname{Re}^t b \cdot r) \Theta\begin{bmatrix} a\\b \end{bmatrix}$ (W), where $r,s \in (1+i)\mathbb{Z}[i]^2$,

(iv) if
$$a \cdot b \in (1+i)\mathbb{Z}[i]$$
, then $\Theta \begin{bmatrix} a \\ b \end{bmatrix}$ (W) vanishes.

By the properties (ii),(iii) and (iv), it is enough to consider only ten theta functions $\Theta\begin{bmatrix}a\\b\end{bmatrix}$ (W), where a,b \in {0,1} 2 and t a·b = 0. Let Γ (1+i) be the congruence subgroup

 $\Gamma(1+i) := \{g \in GL(4,\mathbb{Z}[i]) \mid g^* \text{ J } g = \text{ J, } g \equiv \text{ I}_4 \mod (1+i) \},$ of level (1+i), and let

$$\Gamma_{T}(1+i) := \Gamma(1+i) \times \langle T \rangle \subset Aut(D)$$
.

Definition. A holomorphic function f on D is called a hermitian

modular form of weight 2k relative to $\Gamma_T(1+i)$ (with the character det: $\Gamma(1+i) \rightarrow$ the group of units of $\mathbb{Z}[i]$), if the following conditions are satisfied:

- (i) $f(T \cdot W) = f(W)$,
- (ii) $f(g \cdot W) = \{det(g)\}^k \{det(CW+D)\}^{2k} f(W), g = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \in \Gamma(1+i).$

Let $\mbox{Mod}_{2k}(\mbox{1+i})$ denote the vector space spaned by hermitian modular forms of weight 2k relative to $\Gamma_T(\mbox{1+i})$ and let

$$Mod(1+i) := \bigoplus_{k \ge 0} Mod_{2k}(1+i)$$

be the graded ring of hermitian modular forms relative to $\Gamma_{T}(1+i)$.

Proposition 1. The ten functions $\Theta\begin{bmatrix}a\\b\end{bmatrix}(W)^2$ (a,b \in {0,1}, tab = 0) are hermitian modular forms of weight 2 relative to $\Gamma_T(1+i)$.

Proposition 1 is essentially proved in [Fr].

Proposition 2. Theta functions $\Theta\begin{bmatrix} a \\ b \end{bmatrix}$ (W) $(a,b \in \{0,1\}^2, \ a \cdot b = 0)$ satisfy the following relations:

$$\sum_{\substack{t \text{ a} \cdot b \in 2\mathbb{Z}}} \Theta \begin{bmatrix} a \\ b \end{bmatrix} (W)^2 e \begin{bmatrix} t \text{ ca} + t \text{ db} \end{bmatrix} = 0, \quad c, d \in \{0, 1\}^2, \quad t \text{ c} \cdot d = 1.$$

Remark 3. The proposition gives six linear relations between the theta functions $\Theta\begin{bmatrix}a\\b\end{bmatrix}(W)^2$; five relations among the six are linearly independent.

Let $\overline{\Gamma_T(1+i)\setminus D}$ be the Satake compactification of the quotient space $\Gamma_T(1+i)\setminus D$. We define a holomorphic map $\Phi\colon\overline{\Gamma_T(1+i)\setminus D}\to\mathbb{P}^9$ by $\Phi\colon W\mapsto [\cdots,\Theta\begin{bmatrix}a\\b\end{bmatrix}(W)^2,\cdots].$

By Remark 3, it is clear that the image of Φ is included in a 4-dimensional linear subspace of \mathbb{P}^9 , which will be denoted by Y. Now we state the main result of the present paper:

Theorem 4. The map Φ gives an isomorphism between $\Gamma_T(1+i) \setminus D$ and $\Upsilon (\cong \mathbb{P}^4)$.

Corollary 5. Any five linearly independent theta functions $\Theta\begin{bmatrix} a \\ b \end{bmatrix}$ (W) are free generators of the graded ring Mod(1+i).

Remark 6. As the isomorphism $\phi: \overline{\Gamma(2) \backslash \mathbb{H}} \to X \ (\cong \mathbb{P}^1)$ connects the analytic moduli and the algebraic moduli of the family of ellipitic curves, the isomorphism $\Phi: \overline{\Gamma_T(1+i) \backslash D} \to Y \ (\cong \mathbb{P}^4)$ connects the analytic moduli and the algebraic moduli of a 4-dimensional family of K3 surfaces, which are double cover of \mathbb{P}^2 branching along 6 lines. For more details, see [MSY2] and [Ma2].

References

[Fr] E. Freitag, Modulformen zweiten Grades zum rationalen und Gauβschen Zahlkörper, Sitz. der Heidelberger Akad. Wiss, No.1, 1-49 (1967).

[Igl] J. Igusa, On Siegel modular forms of genus two I, II, Amer. J. Math., 84, 175-200 (1962), 86, 392-412 (1964).

[Ig2] J. Igusa, On the graded ring of theta-constants, Amer. J. Math. 86, 219-246 (1964).

[Mal] K. Matsumoto, On modular functions in 2 variables attached to a family of hyperelliptic curves of genus 3, Ann Socuola Norm. Pisa, Serie IV-Vol.XVI, 557-578 (1989).

[Ma2] K. Matsumoto, The period of a 4-parameter family of K3 surfaces and theta functions on the bounded symmetric domain of type $I_{2,2}$ (in preparation).

[MSY1] K. Matsumoto, T. Sasaki and M. Yoshida, The period of a 4-parameter family of K3 surfaces and the Aomoto-Gel'fand hypergeometric function of type (3,6), Proc. Japan Acad., 64, Ser.A, 307-310 (1988).

[MSY2] K. Matsumoto, T. Sasaki and M. Yoshida, The monodromy of the periopd map of a 4-parameter family of K3 surfaces and the hypergeometric function of type (3,6), (preprint 1990).

[Mu] D. Mumford, Tata Lectures on Theta I, Birkhäuser, Boston, 1983. [PS] I.I. Pyateeskii-Shapiro, Automorphic Functions and the Geometry of Classical Domains, Gordon & Breach, N.Y. 1969.