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On some branched surfaces which admit expanding immersions 1

by
Eijirou HAYAKAVA

Kyoto University

Abstract. Let K be a branched surface whose branch set

S is an embedded circle and such that K\S 1is connected
and oriented. We show that K does not admit expanding
immersions. Combined with our previous result {31, this
implies that among branched surfaces with branch sets single
embedded circles, there are only two which admit expanding

immersions.

0. Introduction

In [3], we have studied the existence of expanding immersions
for branched surfaces K with branch sets S single embedded
circles. But there we restricted ourselves to the case when all
connected components of K\S are orientable and their number is two
or three. In this paper. we study the remaining case i.e. the case
-when K\S is connected. We still assume K\S 1is an orientable
manifold.

Then this type of branched surfaces is constructed from Aé=
29_1-(D+HD') or kg= Zg_l-(D;uDEHD-) as follows. where Z__,
denotes a Riemann surface of genus g-/ , and D', B}, 2 and D~

denote disjoint embedded open disks. Let st and S~ be connected



components of aké , and let S;. Sz and S be connected components

20
of SKg

is +2 or -2 with respect to the orientation on S+ and S~

. Let us take a C1 immersion w:S+ +S~ , whose mapping degree

induced from an orientation of 29_1 . We identify zeSt with y€S~
whenever ¢(z)=y and glue S* to S~ , so that we obtain a c!

branched surface from ké
diffeomorphisms ¢1:5; +S~ and wZ:SE +5~ , on S;. SE and S~ , we

. By the identification, using C!

can construct a branched surface from kg in the same way as gbove.
Ignoring the difference of degrees of attaching maps o, ¢1 and wz ’
we simply denote the former by K; and the latter by Kg . In fact,
we have two topological types for the former, and three types for the
latter. We call the image of S;. S; and S~ , or S* and S under

the above identification the branch set of Kg or KI

g respectively.

Our main result is as follows:

Theorem. Cj branched surface K; , with v= 0 or 1 and g=1,

does not admit CI ezxpanding immersions.

For definitions of C' branched surfaces and C' expanding immersions,
refer to Definition 1| and 2 [3]. Combining this result with the
previous one (3], we conclude that in the class of branched surfaces
with branch sets single embedded circles, only T* and Ir, (See
(31) admit expanding immersions

In §.1, we define a hyperbolic structure on K; , that is, a
Riemannian metric on the tangent space with negative constant
curvature. 8.2 is devoted to the proof of the theorem. First we show

that there exist isometric immersions J:D ak; and d:k; +D , where
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D denptes the Poincaré disk and k; denotes the universal covering
of K; . Suppose that K; admits an expanding immersion f . Then
the composite d°?53 is shown to be an expanding quasiconformal map
of D . where J denotes a lift of f . In the final lemma, we show
that no such maps exist.

The author thanks the referee for pointing out the use of
hyperbolic structures. The idéa of the proof adopted in this paper is

due to him.

1. Hyperbolic structures on K;

We will define a hyperbolic structure on K; . For hyperbolic
structures on ordinary surfaces, the readers can refer to (11.

First we deal with Kg . Using the Poincaré disk model, we can
define a hyperbolic structure on kg which makes S;. S; and S~
closed geodesics of the same length. Then choosing *1 and wz as
isometries, we obtain a hyperbolic structure on Kg .

Next we consider Ké with g22 . In this case, as for Kg . we
have a hyperbolic structure on ké such that S* and S™ are closed
geodesics and 1(S*)= 2-1(S™) , where l(-) denote the length of
arcs. Then we choose ¢ as an isometric immersion, and we can also
define a hyperbolic structure on K; .

Finally we will define a hyperbolic structure on K; . Consider
D\N{(0) . The hyperbolic metric -2ldz|/|zlloglz|l is easily seen to be
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invariant under the mapping o(z)= z° . Therefore By pasting two

boundaries of {zi;1/4<|zl<1/2} by o . one gets a hyperbolic

structure on K;



Remark. i) Under usual hyperbolic structures on ordinary
surfaces, coordinate changes of local charts are orientation
preserving isometries on D . But when deg ¢ =-2 , ours on K; have
orientation reversing isometries. Also when deg w1= -1 and/or
deg ¢2= -1, Kg‘s admits such ones.

ii) Under the above hyperbolic structures., except K; s their branch

sets are closed geodesics. But in the case of K; + the branch set is
not a geodesic.

iii) We can define a hyperbolic structure on K; such that there
exists a closed geodesic SO intersecting S perpendicularly only

at one point.

In this place, as Thurston's developing map [51, we will define
an isometric immersion from the universal cover R; of K; to the
Poincare disk D .

Let m:RY +kY be the projection. Take z,€k” and a

g g 0~"g
sufficiently small neighborhood UO of z5 - Set ﬁ0= n(UO) . Then
we have an isometric immersion dO:UO -»D as the composite of a local
chart on 00 and n . For any yek; +» take a path v from zg to
¥ . By analytic continuation of do along vy , we obtain a map
dy:Uy +D , where Uy denotes a neighborhood of ¥ . Sincé k; is
simply connected, dy does not depend on the choice of a path 7 .
Hence mapping any yek; to dy(y), we obtain a desired isometric

immersion d:k; -D .

2. Proof of the theorem

We will construct an isometric immersion J:D *K; .
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First we deal with K; . Recall that there exists a simple

closed geodesic SO which is orthogonal to the branch set S . Cut

K; first along S and then along SO .- Prepare infinitely many
copies of the resultant surface and glue them together so as to

obtain a complete surface L . See Figure 1.
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Clearly there is an isometric immersion of L into K; . Passing to

the universal covering, we get the desired immersion gJ:D »K; .

o = ) -
7

| 72?un:42.

Next we deal with Kg . We prepare infinitely many copies Kt
of the hyperbolic surface Rg , and glue them to obtain a complete
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connected hyperbolic surface M as in Figure 2 so that they satisfy:
1) Each copy Kt of kg has a natural embedding ti:Ki»M .

2) M has an isometric immersion p:¥ *Kg such that poziqkiakg is
the same map as the projection kg »Kg/ up to the identification of
Ki with Rg . Let n”:D -4 be the universal covering of # . Set j=
PeTy . This is the desired one.

Let us continue the proof of the theorem. Suppose for
contradiction that K; admits én expanding immersion f . Let us
take a lift J:D »k; of 4 , and take a lift ?:k; »R; of F .

Set F= d-f+j . We shall show that F is an expanding

quasiconformal map. Since f 1is an immersion. and since K; is

compact, we have
supveTsz Idfco)i7ivi

k = sup g ( o .,
v inf v idf(v»)i/ivi
xng veTng

As d and ? are locally isometric, we have
supveTZD udF(v)Ih/ﬂvﬂh

k = sup - { @,
zeD lnfUGTzD ndF(vluh/ﬂvﬂh

where H-ﬂh denotes the hyperbolic metric on D . This shows
immediately that F 1is quasiconformal. (For the definition of
quasiconformal maps, refer to [2].) Also we know F is a
diffeomorphism of D since F 1is a quasiisometric immersion.
Passing to f" for a sufficiently large integer = in the
construction of F , if necessary, we may assume that

inf ﬂdF(v)Ih/Hvﬂh >e > 1 .
veTD /

Then, to complete the proof, we show the following lemma.



Lemma. The open unit disk D does not admit a k—quasiconformal
diffeomorphism ¢ wilth the following properties:

1) inf Hd@(v)uhluvﬂh >e > 1 .
veTD

2) ¢(0)= 0 .

Proof. Supﬁose for contradiction that there exists a
k-quasiconformal diffeomorphism ¢ with the properties 1) and 2).
Set Ar= {zeD; p(0,2)>r) , where p 1is the hyperbolic distance.

By the properties 1) and 2), we have w_l(Ar)DA -1 for any r>0 .
c'r

Since ¢ 1is a k-quasiconformal map, we have the following

inequality:
MCAD

—r (1)
M@~ (A))

0 < % <

where M(A) denotes the modulus of an annulus A . (See §.6 [4]1 for
the definitfon of the modulus, and refer to Theorem 7.1 [41 for the
inequality (1).)

On the other hand, since ¢_1(Ar)3A -1 + We have:

ec'r
MCAL) MCALD

SHA
¢ 'r

As the hyperbolic distance r 1is equal to the Euclidian distance

(2)

M(tp'l(Ar)) )

(e"-1)/(e"+1) , we have:

-1
r ¢ 'r
M(Ar)= log 2?11 and HM(A -1 )= log Q—:T—il .
e -1 e 'r e T-1

- Hence easily we show the right-hand side of (2) tends to 0 as r

tends to infinity. But -this contradicts (1). ‘ a
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Since we can choose the map d such that d(?o?(O))= 0 . we may

assume F(0)= 0 . Then F has the properties 1) and 2). Hence Lemma

implies that f cannot be an expanding immersion. This completes the

proof.
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