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From the data of a 3D numerically simulated isotropic turbulence, it is
found that the statistics of longitudinal velocity difference in distance r is
different from that of the velocity scale derived from dissipation averaged over
a domain of scale r, and then intermittency exponents cannot exactly be related
with exponents of structure functions. The brobability distfibutions in both
statistics are comparatively studied from the viewpoint of scale-similarity and

modelling to involve multifractality.

The multifractality of isotropic turbulence was first argued by Frisch and
Parisi' in relevance with longitudinal velocity difference Au. in distance r.
They assume the scale-similarity described as

Au, ~ r", (1)
where h is singularity strength at each location of the flow field. The iso-h
set in space is considered to be multifractal with dimension D(h). The spatial
distribution of h is now claimed to have been observed by a wavelet analysis?®,
but the D-h spectrum to be derived from that is not yet publicized to the
authors’ knowledge.

On the other ‘hand, the f—-¢ formalism originating in the theory of strange
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attractors was applied by Meneveau and Sreenivasan®’ to the dissipation neasure
of isotropic turbulence. They assume in place of (1)

e, ~r*1, (2)
where ¢ . is energy dissipation rate averaged over a domain of scale r.
Similarly, the iso—a set in space is multifractal with dimension f(ea ). From
the experimental data in a 1D cut, they investigated the f-a spectrum through
generalized dimensiaé" and proposed a theoretical model, called the p model,
to explain the intermittent and multifractal structure of isotropic
turbulence. ® Later, the present authors did the same investigation based on the
data of a 3D direct numerical simulation to get similar but clearly distinct
pictures of the f-a spectrum as well as generalized dimensions.®™® The senior
author (IH) contrived a generalized class of Cantor set models (including the p
model) to find a model most suitable for these results at hand. ®’

From the viewpoint of scale-similarity™ ., (1) and (2) can be interrelated

with each other. Since the velocity scale to be related with €. is

vo=(re)”r, | (3)

the equality:
h=a/3 4)

may naturally be expected by a presumption that Au, ~ v..® If it is true, the
equivalence of the D-h spectrum and the f-a spectrum is obvious. However, it
may not really be so. A symptom is the dilemma that we have no negative value of
a in the f-e spectrum so far, while negative values of h are frequently seen
in the result of the wavelet analysis® . Therefore, it is essential at this
stage to investigate whether the correspondence:
Au, ~ v, | 5)

is valid or not.

Before doing so, we should like to point out that there are many ways to

represent the velocity difference associated with a disjoint subbox of scale r.
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In a most plain way, Au. can be defined as the absolute difference of the x
components of velocity at the centers of the opposite yz surfaces of the subbox.
But another quantity, Av., which is the magnitude of the vectorial velocity
difference just there, may be better. Or, <Av.>, which is the three-directional
average of the magnitude of the vectorial velocity difference averaged over the
-whole yz surfaces, may be much better.

For the pljrpose of comparing these velocity differences with v., we utilize
the same data of a 3D numerical direct simulation of fully-developed isotropic
turbulence as uscd for calculating the f-a spectrum®™®, the details of which
were described in Refs. 10 and 11. We plot v. and Au. at all locations of the
subboxes in Fig. 1 for r/L = 8/128, which is in the inertial range; L. is the
scale of the main box. Here, v. is normalized by (Le.)'”®, and Au. by such a
particular constant that the averages of the two normalized quantities exactly
coincide. In Figs. 2 and 3 are seen Av,. and <Av.) against v., normalized just
in the same way as above. From Fig. 1 we can judge that Au. is independent of
v. and 1t is impossible to presume any individual correspondence between them.
Any statistical resemblance is not found, either. Then, (5) and then (4) are not
exactly valid, and there is no equivalence of the D—hyspectrum (if it exists)
and the f-a spectrum. We should notice that‘ Fig. 1 hardly supports the 1962
Kolmogorov theory on refined similarily hypothesis'® (specifically Eq. (7) in
Ref. 12), because we cannot see even a statistical proportional dependence of
Au: on v.. As a corollary, the often used relation between intermittency
exponents and the scaling exponents of velocity structure functions:

o =p/3- toss (6)
does not exactly hold; since it is based on (1)-(4) through the definitions,
{JAu > ~ rt® and {e %> ~ r'*%, the angular bracket denoting the ensemble
average. In Figs. 2 and 3 we can see that Av. is closer to v. in the variation

range than Au., and <Av.)> is closest to v.. In fact, a considerable
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statistical resemblance between {Av,> and v. is expected, and it may well
Judged in ~Fig. 4, where the probabilily densities of all the observed quantities
are compared. Then, the 1962 Kolmogorov theory can be only statiétical ly true,
if Au, is replaced by <Av.>. These results are invariant to a different r
which belongs to the inertial range.

What can be noticed in Fig. 1 is that therc are many points beyond Au, =1
and a dense population exists merging in Au. = 0. The former fact suggests the
existence of negative values of h, since Au, corresponds to r". The probability
density of Au. plotted in Fig. 4 might well be exponential ~ e **. This is
transformed in terms of h to

P(h;r) = kcexp(-ker®)r"|1nr|. (7)
Here and hereafter, r should read as r/L, and ¢ (const) = Au./r*. The peak of P
appears at r* = (kc)™'. If we assume h = 1/3 (the 41 Kolmogorov value) at the
peak and replace kc by r™'*, we may have a universal expression of P, which
supports the result of the wavelet analysis? considerably well. However, this P
vields straightforwardly ¢, = p/3, which is the same trend as the 1941
Kolmogorov theory. Therefore, it is unlikely that a purely exponential form
fully involves intermittency and possible multifractality. A valid probability
density should contain a D(h) in the form of (10) in place of the f(a ). But the
function D(h) is still unknown.

In contrast, we know that the lognormal distribution'® of dissipation

e./er (=r° '), written in terms of a, as

P(a;r) =ri #2722« |1nr|/(2r u)]'? (8)
gives exactly the fractal dimension of the iso—a set as
f(a)=-(a -1~ u/2)*/2n +3, (9)

where 1 = pn.; 4 =0.2 is a current setting. Indeed, this probability well
suits to the general expression required from multifractality of the iso-a

set:
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P(a:r) = r** @ [|f(a)lnrl /(@7 )12, asr — 0. (10)'®
As a meaningful alternative model, we here introduce a genéralized Cantor set
model®’ which has a simple expression of ¢, as

#a = logal(B® + C*)/2] (11)
with A = 2'3, B =1.2175 and C = 0.782%5. These settings of the parameters
better fit to our 3D numerical results than the p model in which A =2, B=1.4
and C = (,6 ?’ (This fact may be seen in Fig. 4 in comparison with v.. Note in
particular that the range of v. is narrower in the p model, because of the
narrower range of e just as described below.) This Cantor set model gives
exactly

f(a) =3 - {[In(A° 'B)/In(C/B)]In[1In(B/C)/In(A*"'B) - 1]

= In[2In(A°~"C)/In(C/B)]}/1nA (12)

for @min < @ < @max, Where @min =1 - InB/InA and @ wa.x = 1 — InC/InA. The
lognormal model is very approximate to this model [(10)-(12)], as is seen in
Fig. 4, but violates the Novikov condition'®’ while the Cantor set model does
not, as u#, in (11) is asymptotically linear in q. It is interesting to note
that the probability density of v. in this model has a longer exponential tail
for smaller r, as is assured by a computer. (This is more exponential than
e .'7%. See Ref. 9.) v

In conclusion, the statistics of Au. and that of v. are separate matters
in an exact sense‘. The error of (6) will be large for p large; it may be most
readily estimated by comparing the ¢, by Vincent and Menegucci'® and the 4.
by Hosokawa and Yamamoto” . Here seems to be one of the reasons why the latter
deviats from the prediction using (6) from Anselmet et al’s experiment'” . It is
to be noted that ., exists for q < 0, as was already shown® ® , while ¢, for p
- < 0 cannot exist because we have a non-vanishing probability of Au. = 0. The
probability density of Au. collaborated with ils multifractality is still

unclear, while a consistent model with multifractality exists for ¢ . and then
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v.. Finally, it should be pointed out that the same problem can exist for the
statistics of temperature difference in distance r and that of the temperature
scale derived from temperature dissipation averaged over in a domain of scale r

and €. in isotropic turbulence.
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Figure Captions

Fig. 1 Correlation of Au, and v. for r/L = 8/128.
Fig. .2 Correlation of Av. and v, »fOt" r/L = 8/128.
Fig. 3 Correlation of <Av,> and v. for r/L = 8/128.

Fig. 4 Normalized histograms of v. (= (re.)'®), Au., Av., and <Av,> for

r/L. = 8/128. Theoretical probability densities: — —— the Cantor set
model quoted from Ref. 9, based on (10)-(12), --------- the p model,
based on (10)-(12), axd —— - —— the lognormal model with x = 0.2
based on (8).
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