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Simplified Morasses which capture the A-systems
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Abstract

We define certain types of simplified morasses which capture the A-systems. We have
a partial answer concerning their existence and nonexistence and this provides some clue
to a question raised in [3].

§0 Introduction.

For a regular cardinal k, we investigate certain types of simplified (x,1)-morasses
which naturally come out in the forcing construction of simplified («,1)-morasses.

Roughly speaking, given a collection X C [s+]<* s.t. | X |= &, a complete amalga-
mation system in [1] captures a pair of two elements of X' in such a manner that the two
have the same origin and the origin develops splitting finitely many times along the («,1)-
morass in reaching the two. And as for simplified («,1)-morasses constructed by forcing,
we may demand that the two elements be captured in such a way that they have the same
origin and the origin reaches the two along the tree structure with just one splitting.

It seemed that constructions using those types of morasses which require just one
splitting is easier to comprehend than those ordinary ones which require finitely many
splittings, although what important here is that finitely many splittings provide no real
harm to the constructions.

It turns out that the morasses which can do the business with just one splitting may
not exist at all (at least for the case kK = wy under M 4,,,).

In §1, we make basic definitions and list relevant facts. In §2, we establish an existence
of this type of morass. In §3, we partially answer that they may not exist. In §4, we list
open questions. '

For a history and application of these morasses, see [3] and [4].

§1 Nice Simplified Morasses.

(1.1) Notation. In this paper « will always denote a regular cardinal. For sets X,
Y of ordinals X < Y denotes that for any ¢ € X and any j € Y, ¢ < j holds. For a set

X of ordinals and an ordinal j, X < j means X < {j}. Other notations should be fairly
standard.

_i

(1.2) Definition. A collection X is a nice A-system in [ct]<* if

(1) X [s*]<* and | X |= &T. - :

(2) X forms a A-system (i.e. there is A € [x+]<*, which we call the root of the system
X, s.t. for any pair (z,y) of distinct elements of X, z Ny = A).
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(3) For any pair (z,y) of elements of X, the structures (z, €) and (y, €) are isomorphic.

(4) For any pair (z,y) of distinct elements of X, either A <2 —A <y—Aor A<
y— A <z — A holds.

._{
We usually enumerate X in one-to-one manner, say, X = {X¢ : £ < x*} s.t. for any
(&, Q) withé < (< k™, XeNX¢ < Xe — X¢ < X¢ — X¢ holds.
(1.3) Proposition. (2<% = k) For any X s.t. X C[k1]<* and | X |= &7, there is a
nice A-system Y with Y C X.

Proof. We may use the Fodor’s lemma. The rest is by using 2<* = «.

_i

From (1.4) through (1.7), we follow [2] with an eye to forcing constructions of simplified
(k,1)-morasses.

(1.4) Definition. A pair of sequences ((0a)a<s, (Fga)s<a<s) is @ baby morass of
length 6 + 1 if there is a unique sequence of ordinals (04)a<s S.t.
(1) (fa)a<s is a sequence of strictly increasing ordinals with 6y > 0.
(2) Foreach a < 6, 04 < 0y and 041 = 04 + (60 — 04).
(3) For each (8,a) with 8 < a < 6, Fpq is a set of order-preserving functions from 64 to

(4) For each a < 6, let id, denote the identity function from 6, to 8,, then F,, = {1d4}.

(5) For each a < 4, let f, denote the map from 0, to 0441 st. fo[oa = idafos and
fa(t) =64 + (1 — 04) for all ¢ with 04 < @ < 0,4, then Fyot1 = {ida, fo}-

(6) For any (a, f1,B2,h1,h2) s.t. « is a limit ordinal, 8,06, < a < 6, hy € Fp,, and

hy € Fg,q, there is (B,91,92,9) st. 1,82 < B < a, g1 € Fp, 8, g2 € Fg,8, g € Fga,
h1 =gog; and hy = g og,.

(7) For any (B,a,v) with 8 <a <y <6, Fgy = Foy0 Fgq,.
(8) For any (B,a) with < a < 6,0, ={J{f"0s: f € Fp,}.
_{

(1.5) Proposition. Let ((84)a<s, (Fsa)s<a<s) be a baby morass. If (, 8, f, 9,1, 7)
isst. B a<é, f,g€Fpq,t,j€0bgand f(¢z) =¢g(y), theni=jand f[i+1=g[j+1.
Proof. By induction on a(< §) for all 3. No use of (8) in (1.4) is made.

_.|

(1.6) Definition. A pair of sequences ({8a)a<r; (Fa)p<a<x) is a simplified (x,1)-
morass if

(1) ({fa)a<xs (FBa)s<a<x) is a baby morass of length « + 1.
(2) For any a < k, 0, < s and 0, = k.
(3) For any (B, a) with B < a <k, | Fgq |< &.
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We will consider simplified («,1)-morasses as well as (x*,1)-morasses. We sometimes
use A to name a simplified morass.

(1.7) Proposition. Let ({(64)a<x, (Fpa)s<a<x) be a simplified (x,1)-morass, then
{f"04 : @ < Kk, f € Fay} is a cofinal subset of [xT]<* with respect to C.

Proof. It takes some facts about simplified morasses other than (1.5). But this is
well-known.

_.{

(1.8) Definition. A simplified (&, 1)-morass ({8a)a<sx, (Fpa)s<a<x) is weakly nice if
For any nice A-system X in [k¥]<* (see (1.2) for definition ), there is (a, z, f) s.t.
a<k,z2Cly,2—0q#0, f € Foay1x and {foidLz, fo fllz} CX.
For a simplified (x, 1)-morass ({0a)a<k, (Fga)s<a<x), & sequence (zq4)a<x is nice if
(1) For each a < k, 2o C b,.
(2) For any nice A-system X in [kT]<*, there is (@, f) s.t. @ < &, 2o —0a # 0, f € Fatix
and {f oidlza, fo fllza} C X.
A simplified (,1)-morass is nice if there is a nice sequence for the morass.

_’

From (1.9) through (1.11), we shoot for an analogy with [1]. Note that for any
simplified (s, 1)-morass, the existence of a complete amalgamation system for the morass
is equivalent to 2% = x¥.

(1.9) Proposition. If there is a nice simplified («, 1)-morass A, then 2<* = & holds.

Proof. Fix A < k. We show 2* < k. Let (za)a<x be a nice sequence for the morass
A= ((ga)agm (Fﬂa)ﬁﬁaﬁn)' Given X C A, let X = {X 8] {/\,77} k<< K+}. Then X
is a nice A-system in [k+]<*. Since (zq)a<x is a nice sequence for A, there is (a, f) s.t.
a< K 2a—0a#0, f € Fot1x and {foidlza, fo fllza} C X. Sowehave X = (f"2z4)NA
and A € f"z,. Hence P(A) = {(f"24) N A :a < Kk, f € Fay1x, A € f"24} holds. But for
any a < k,if f,9 € Fay1c and X € (f"24)N (9" 24), then (f"24) N A = (g"24) N A holds by
(1.5). Therefore we conclude that | P(A) |< &.

_.l
(1.10) Proposition. For a simplified («*, 1)-morass A, the following are equivalent.
(1) A is nice.
(2) A is weakly nice and 2* = k™ holds.
Proof. (1)=>(2): If A is nice, then it is trivial by definition that A is weakly nice and
by (1.9), 2* = kT holds.

(2)=>(1): This proof is a slight modification of [1]. For each @ < ™, since §, < &
and 2% = kt, we may fix an enumeration (Xg)sc.+ of *P(84)(= the x-sequences of subsets
of 6,). For each a < kt, let D, = {f()_('f) 16,6 < a,f € Fga}, where f()—ff) denotes the
sequence of length « s.t. for each n < &, the n-th value is given by {f(7) : ¢ € (Xf),, (= the
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n-th value of Xf)} Since | Fgq |< & for all (B, a) with 8 < a < &1, we know | Do |< &
holds for all a < 7.
It is clear that we may choose ((21)y<x+)n<x S:t.

(1) Vp < kVa < £t 21 C b,.
(2) Va < £*VX € Do3n < k+ 21 = (X), (= the n-th value of X).
Claim. For some n < & (z1)a<x+ is a nice sequence for A.
Proof. For each a < s*, let D2 = {f(¥): 8 < a,Y € Ds,f € Fgo}. Then
DP C D, and let DY = D, — DE. We define (Fo)q<x+ s.t. for each a < x*
(3)a Fy:Dgy — k™.
(4)a Fo[DY is one-to-one.
(5)a (FIIDP) N (FIIDN) —
(6)0 VB < aVY € Dﬂvf € Fﬂa Fﬂ(Y) ( (Y))

The construction is by a recursion on a < *. Suppose we have constructed (Fj)g<q-
We construct F,,. For X € DP | since we have (6)4 for all 8 < «, there is a unique element
of k* which fulfills (6)y. Let F,(X) be this element of k. Since | DP |< & and the

codomain of F, is T, there is no problem in fulfilling (4), and (5)4. This completes the
construction. We first observe that for any a < «

(Mo X,V €Dy, X # 7 but Fo(X) = Fo(¥), then X, ¥ € DP.
And so

(8)0, KX YeD, X+#7Y and Fo(X) = F, (Y) then there is (,B,Z f,9) st. B < «a,
7 €Dy f,q € Fpar £(Z) = X and o(Z) =

Finally we define F : N[st1]<*") = s+ by F(X) = Fo(X?) for any (8,a,6) s.t.
B,6 < a and there is f € Fg,+ with X = f(fff) F is well-defined by (6), and (1.7). Now
we are ready to prove our claim by contradiction.

Suppose for every n < &, (21)4<x+ failed to be a nice sequence. So there is (X)) <k
s.t. for each n < &

(9), X, is a nice A-system in [n++]<"+, say, Xy = {Xpelecn++ s.t. for any (£,() with
(< (< KZ++, an n X'IC < Xﬂg — ch < ch - an.
(10), ~3a < K¥3f € Fapror (21 — 0a # 0 and {f o f121, f 0 idiz1} C Xy).

For each ¢ < s*%, let X¢ = (Xye)g<x. Then X'f is a k-sequence of elements of
[n++]<"+. Since 2¢ = k™, without loss of generality we may assume that for any (¢, ()
with ¢ < ¢ < &TT, F(X:f) = F(XC) and the two structures (U, .. Xye, <;oes Xpg, ---)
and (U, <x Xn¢, <,y Xn¢, ...) are isomorphic. Furthermore we may assume the collection
X = {Up<x Xn¢ : € <&t} forms a nice A-system in [n++]<"+.

Since the morass A is weakly nice, there is (a,z2,f) s.t. a < kt, 2 C b, z —
00 £ 0, f € Faq14+ and {f oidlz,f o filz} C X. Let (£,{) best. £ < ( < &t
foidyz=U,cx Xnes fofaz=U,ccXnc Sothereis § < &t st. 2= Uran(Xg). The
structures (z, <, ...,(fg'),,, ) and (U, <« X,,e,<,...,()z5),,,...) are isomorphic by f o id,
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and the structures (z, <, ...,(X%)y, ...) and (Uy<n Xn¢s <,y (X¢)n, -..) are isomorphic by
fo fa

We claim )'fg’ € D,. To see this we fix (v,9,h) st. a+1,6§ <y < kt, g € Fat1q,

h € Fy+ and hog = f. By the definition of D7, g 01da(X5), go fo(Xg) € Dy and

Fy (g 0ida(X5)) = F(Xe) = F(XQ) = Fy(g 0 f2(X2)). By (8),, we have (8, %,g1,2) st

B<~ ZeDg, gi,g2 € Fﬂ% gl(Z) = goidy (X6 ) and g2(Z) = g o fa(Xg). So 8 < a and

there is g3 € Fq s.t. g3(Z) = X2. And so X2 € Dy. Since X& € Dy and (2) hold, there
isn < kst 21 = (Xg),. Since {foidg(fg)n,fofg(fg”),,} C &,. This contradicts (10),.
_l

(1.11) Proposition. (2<% = k) Let A be a weakly nice simplified (x, 1)-morass, then
there is a nice sequence for A in the generic extensions via the forcing notion (¥>2, D).

Proof. This proof is a simple modification of [1]. We describe a natural forcing notion
P for adding a nice sequence for A. Then it is easy to see that the P is k-closed, atomless
(i.e. Vp € P3p,,ps € P p; and p, are incompatible and p;,p < p ) and | P |= k. Since
(*>k, D) is densely embeddable into P. We will be done.

Now here is the p.o. set P defined by P = {(28)p<a : @ < £, VB < a 25 C 03} and
for pge P,qg<piff ¢ Dp.

Suppose G is an arbitrary P-generic filter over the ground model V. Let (2g)g<x =
UG (in V[G]). We show (zg)p<x is a nice sequence for A.

Suppose p||——“{X¢ €< rc'*‘} is a nice A-system s.t. for each (£,{) with ¢ < { < &%
Xg ﬂX(; < Xf X, < XC - Xf”. We want (q,a, f,€,() s.t. ¢ < p, the length of q
isa+1, f € Fopin, € < ¢ < &%, 28 —04 # 0 and q|F“3L = 2,4, foidhia = Xf
and fo fllzq = XC”- For each ¢ < k™, since P is k-closed, we know p”—“Xs e V.
Since A is cofinal in [k¥]<* with respect to C, we may take (pe, ag, X, fe) s.t. pe < p,
pe |- “Xe = X¢”, ag is the length of pe, fe € Foex and X¢ C f{'0o,. By thinning, we may
assume that there is (¢,a,2) sit. {pe : £ < k¥} = {q}, @ is the length of ¢, z C 6,, for
each { < kT fz = X¢, {X¢ : € < x1} forms a nice A-system s.t. for any (¢,() with
§<C<I€+, XeNXe < Xe — X¢ < X¢ — Xe.

Since A is weakly nice there is (a',2', f,€,() st. & < &, 2' C by, 2' — a0 # 0,
f € Fajin, € <, foidlz' = X¢ and fo fl2' = X¢. Since 2' — oo # 0, it must
be the case that a < o'. By extending g, if necessary, we may assume that the length
of gis ' + 1 and za, = 2'. Since f o zda,za, = X¢ and fo fll.z!, = X, hold, we have
glF“foidl 2y = Xf and fo fllzy = X(” '

_i

§2 Forcing Nice Simplified Morasses.

In this section we force a weakly nice simplified morass. We have a forcing notion
to add a simplified morass (see for example [2]). It turns out that the generic simplified

morasses are weakly nice ones. For reader’s convenience we list relevant definitions and
facts. |
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(2.1) Definition. For baby morasses By = ((63)a<st,(Fjq)p<acst) and Bz =
((62)a<s2, (Fg o) p<a<s?) (for definition see (1.4)), we introduce a partial order by B; < B,
iff
(1) 6 < 6.

(2) For any « with a < 6, 62 = 6.
(3) For any (3,a) with < a < §', F2, = F},.
_|

(2.2) Proposition. For any baby morass B = ((64)a<s, (Fga)g<a<s) and any ordinal
0 < 65, we have a baby morass B' = ((84)a<s', (Fge)p<a<s) st
(1) ¥ =6+1.

(2) B' < B.
(3) 9l6+1 =65 + (05 — 0’).

Proof. This is an easy exercise.

_.‘

(2.3) Definition. A subset X of x¥ is said good if for any a < £+, X N[ka, k(a+1))
is down-ward closed in it. (ie. f ka < j < i< k(a+1)and: € X, then j € X.)

_{

(2.4) Definition. We describe a forcing notion P for adding a (,1)-morass. Let
p€ Piff p=(B,h) s.t.

(1) B = ((fa)a<s, (Faa)s<a<s) is a baby morass of length & + 1.

(2) 6 <k and 65 < &.

(3) For any (8,a) with 8 < a <§,| Fsq |< k.

(4) h is an order-preserving function from 65 to k¥ s.t. h"8s is a good subset of k™.

It is our convention to use script p to denote the relevant parts of the forcing condition
p such as By, hy, 6%, F};a and 6,.
For p,q € P we define ¢ < p iff

B, < B, as baby morasses and there is a unique k € ngaq st. hgoh = hy.

(2.5) Lemma.
(1) (P,L)is a p.o. set.

(2) For any pair of conditions of P with the same baby morass parts, say, p = (B, h,),

g = (B, hy), suppose there is 0 < 65 s.t. hy[o = h[o and hy(c) > hy6s5. Then there
isr = (B, hy) € P s.t. '

(a) 6 =6+ 1 and 9;+1 =95+(95—0’).
(b) r <p,q.
(C) h,. 0f5 = hq and h,. Oid5 = hp.
(3) Suppose we have gotten a sequence (p¢)e<, of descending conditions of P (i.e. pg > p¢
for all (&,¢) with £ < ( < p) sit. p < k and p is a limit ordinal. For each £ < p,
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denote pg = (Bg, h¢) and Bg has the length ¢ + 1 < x. Let 6§ = sup{6¢ : £ < p}, then
there is p = (Bp, hp) € P s.t. the baby morass B, has the length 6 + 1, for each £ < p
p < pe with hyt o he € F& s and 6% is the order—type of Ue<, P h"Gp‘

(4) For any condition p of P and any ordinal 7 < &, there is ¢ € P s.t. ¢ < p, §; > 7 and
6 >r.
q
(5) For any condition p of P and any i € kt*, thereisg € P st. g<pandi€ h’q'Ggq.
(6) (P, <) is k-closed.
(7) (2<% = k) (P, <) has the xk*-c.c..
Proof. We just comment that we required that the image of hp, where p = (Bp, hy),
is a good subset of x in order to get (5). The rest is well-known. (see for example [2].)

._l

(2.6) Theorem. (2<% = k) There is a weakly nice simplified («,1)-morass in the
generic extensions via the P of (2.4).

Proof. Let G be an arbitrary P-generic filter over the ground model V. For each
a < K, let 8, = 67 for any p € G with a < §, and let 6, = «* (in V[G]). For (8,a)
w1thﬂ < a < kK, let Fgo = Fp for any p € G with @ < §,. For each a < &, let

an‘—{h Of pEG,O!SlSp,fE 6p}'

Then it is known that ((0a)a<x; (Fga)g<a<x) is a simplified (x,1)-morass in V[G].
We show this is a weakly nice one.

Suppose p [-“{X¢ : € < k*} is a nice A-system s.t. for any (¢,¢) with £ < ¢ < &™,
XEOXC < X'g _XC < XC -XE”- We want (g, a, z,{,() st. ¢ <p,a<é, =a+l,
2C0L, z—0l#0,6 <<kt and q”——“h 0id!z = X¢ and hgo fz = XC”- (Note that
q|-“hq € Fotir, 1dL = idy and fI = fo”. )

Since P is k-closed, we know for each ¢ < &k, p”——“X € V7. So we have (pe, Xe)
s.t. pe “—“X5 X¢” and X C h" 91" . By thinning, using 2<% = k, we may assume

that {X¢ : ¢ < k*} forms a nice A system and that there are a baby morass B =
({a)a<s, (Fpa)p<a<s) and z C 65 s.t. for each £ < kT, pe = (B, hy, ) and h;jfz = X¢ hold.
Since any pair of conditions from {p¢ : £ < k¥} satisfy (2) of (2.5), we are done.

_I

(2.7) Corollary. It is consistent that there exists a nice simplified (x,1)-morass
relative to the consistency of ZFC.

Proof. By (2.6) and (1.11).

§3 Destroying Weakly Nice Simplified Morasses.

In this section we destroy the weakly niceness of a weakly nice simplified (&, 1)-morass.
Note that if a k-closed forcing notion P satisfies the following stronger form of the xt-c.c.,
then the weakly nice simplified morasses remain weakly nice: For any {p¢}¢<x+ C P, there

7
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isIst. I Ckt,|I|=«x" and for any ¢,¢ € I with £ # (, pe and p, are compatible in P.
So our p.o. set does not satisfy this property.

(3.1) Definition. Let A be an arbitrary weakly nice simplified (k,1)-morass. We
define a forcing notion P designed to kill the weakly niceness of A by forcing a subset of
kt. Let pe P iff
(1) pC kT and | p < k.

(2) For any 1,5 € p with i < j, 7{3a3dk € 0, — 0,3f € Fat1x (f 0ido(k) = i and
fo foa(k) =3)} holds.

For p,g€ P,q<piff ¢ 2 p.

_|

(3.2) Lemma. Let (po,p1,p2,pP3,%,2,91,92) be s.t. pg,...,ps € P, a < k, z C b,,
2—04 £ 0,91,92 € Fat1x, g1[ida(0a) = g2[1da(04), 92(1da(0a)) > g10at1, Po = g101dls2,
P1=¢10flz, ps = gz0idiaz and ps = gz0 fil z. Then p; Upz, poUps € P. (But poUp; ¢ P,
p2Ups & P.)

Proof. Since fJj(z — 0q) > 1d)(z — 04) but g2 0idl[(z — 04) > g1 0 fil(2 — 04) holds,
it must be that p; Up, € P.

Since for any ¢ € Fy41x if go fll(2 — 04) = p3 — po, then goidli(z — 04) = p2 — po,
so po U ps € P.

_{

(3.3) Lemma.
(1) (P, <) is k-closed.
(2) (2<% = k) (P, <) has the x*-c.c.. :

Proof. Since (1) is trivial, we show (2). Given {p¢ : £ < k*} C P, by 2<% = g,
we may asume {pg : £ < ¥} forms a nice A-system in [+]<* s.t. for any (¢,¢) with
¢ < (< kY, peNpe < pe —pc < pc — pe holds. Since A is weakly nice, we may further
assume that for each n < &%, there is (ay, 2y, 9y) s.t. ay < K, 2, C 0a,s 29 — O, # 0,
g" € Fa,,+1n’ p2'7 = g” (o] z'dgnzn a,nd p277+1 = g'7 [o] f&'ﬂz,,.

Since | {(a,2) : @ < Kk, z C 8,4} |= & by 2<* = k, we may assume that there is
(a,2) 8.t {ay :n < £t} = {a}, {2y : 1 < s*} = {2} and z C ,. So there are many
combinations of conditions as in (3.2) among {p¢ : { < x¥}. In particular, {ps : { < k*}
is not an antichain.

_{

(3.4) Theorem. (2<% = k) For any weakly nice simplified (x,1)-morass A, there is
a notion of forcing @ which is k-closed and has the x¥-c.c. s.t. A is no more weakly nice
in the generic extensions via Q.

Proof. Consider P in (3.1). Since P has the *-c.c., there is py € P s.t. po |Fp“UG
is cofinal in k*”. Let Q = {p€ P: p < po} with the induced order. It is easy to see that
for any g € Q, ¢ |l-g“Because of | JG C k*, A is no more weakly nice in V[G]".

_i
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(3.5) Corollary. MA,,, implies that there is no weakly nice simplified (wy, 1)-morass.
(there are simplified (wg, 1)-morasses though.)

Proof. By contradiction. Suppose there were a weakly nice simplified (wo, 1)-morass
A. Then we have a c.c.c. p.o. set @ st. |-o“UG is a cofinal subset of w; and JG
witnesses that A is not a weakly nice one”. By MA,,, , we would have such a subset of w;
in V. This is a contradiction.

..{
§4 Open Questions.

We list a number of typical open questions.

1. Are simplified (x,1)-morasses constructed in L nice (weakly nice) in L ?

2. Is every weakly nice simplified («,1)-morass nice under 2<% = ?

3. Is it possible to iterate the @ in (3.4) to obtain that no simplified («, 1)-morass is
weakly nice for k (> w,) ?

4. Is it possible that a complete amalgamation system exists for some (wg,1)-morass
while there exist no weakly nice (wq,1)-morasses ?
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