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Algebraic versus rigid cohomology with logarithmic coefficients:
the 1-dimensional example.

by
Francesco Baldassarri

(Joint work with Bruno Chiarellotto)

§1 Notation.

(K,| - |)= a complete, algebraically closed valued field extension of (Qp,| — |), for some

prime p ; [p| = p~*.

V= the ring of integers of (K, | — |).

M= the maximal ideal of V.

k =V /M, the residue field of K.
For a V-scheme T of finite presentation, we put:

T, = T xvy k, the special fiber of T

Tk =T xy K , the generic fiber of T'.

T": the formal completion of T' along Ts.

Tg"= the rigid analytic space associated to the K-scheme Tx ([BGR]).
For a p-adic formal V-scheme 7 of finite presentation, we put:

T, =7 Xy k, the.special fiber of 7.

Tk = T xy K = the generic fiber of 7 in the sense of Raynaud and Berthelot ([Ra), [Ber]):
it’s a rigid analytic space.

For a separated V-scheme of finite presentation T', using the previous notation, we get
an open immersion of rigid analytic spaces:

T — T,
which is an isomorphism when T is proper over V ([Be]).
The following definition will play an important role in the sequel.

Definition 1.1 For vy € K the type p(7) of « is the radius of convergence of the series:

[e o] I

@)= D =

Y#i=0

Notice that p(y) € [0,1] and p(y) = p(y + n), V¥n € Z. We say that v is p-adically
non-Liouville if p(y) = p(—7) = 1.

Remark. Algebraic numbers are p-adically non-Liouville.



§2 Main Result.

We consider:
Y = a proper smooth, connected V-scheme.
Z = a divisor in Y with normal crossing relative to V:

Z= 0 VAS
=1

where Z() is a closed V-subscheme of Y, smooth, connected of codimension 1.

X = the open V-subscheme of Y, complementary to Z in Y.

The previous hypotheses mean that there exists a finite covering U/ of Y by affine open
subsets U such that:

i) U is étale over AJ} via “coordinates” (z1,...,Zm).

it) The ideal of Zy = Z xy U = Zjy in O(U) is generated by z; ...z, = 0 where
v =v(U).

We also consider:
&y = a locally free finite Oy-module.
V = an integrable Yx /K connection on £ = £y ® K with logarithmic singularities along
Zk. _
So, V is a morphism of abelian sheaves: -

satisfying Leibnitz’s rule and the usual integrability condition. We recall that using the
previous notation we have, on U € U as before:

o z dz; e

z
=1 P j=v41

The hypercohomoiogy of the de Rham complex of (£, V) x, i.e. of the complex:
DR(Xk/K,(E,V)) = 0= Exe — Eixe @ Uy /i — - -
is, by definition, the algebraic cohomology of Xg with coefficients in (£, V), denoted by:
H*(Xk/K,(E,V)).
(From the morphism of ringed sites:
B: Xg — Xk.

one may deduce from (€,V) a X§*/K-connection (£*™,V*™). The hypercohomology of
its de Rham complex

DR(XE/K,(£°", V™)



is, by definition, the analytic cohomology (in the rigid analytic sense) of X&* with coeffi-
cients in (£°™,V®"), denoted by:

H*(X%/K,(€°",V)*").
The morphism of ringed sites, 3, induces a natural morphism of complexe s of sheaves :
BT'DR(Xk/K,(E,V)) — DR(XE"/K, (", V™))
which gives a morphism in hypercohoxﬁology:
B: H'(Xk/K,(§,V)) — H(XE/K,(£,V)*").
Consider now the assumption:

(NL)e The additive subgroup Aof K generated by the exponents of monodromy of
(€,V) around the branches of Zx consists of p-adically non-Liouville numbers.

In this setting we proved years ago ([Ba2]) a result of GAGA type :
Theorem 2.1. Under the assumption (NL)g the morphism f is an isomorphism.

Other results in the same direction may be found in [Bal],[Ct].
We now come to our main statement. Let

jo:Xo;—’Y;,

j: X —Yg"
denote the corresponding open immersions. We notice that X" is a strict neighborhood
of the tube ] X,[ of X, in Yx = Y2" [Ber|. Using the theory of Berthelot we may consider

the j:,r -completion of the previous coefficients. We recall the definition. For A € (0,1)
sufficiently close to 1, we define

Vi =Y\ J1290

=1

where [Zgi)] » denotes the closed tube of radius A of Z{? in V.

We get open immersions: PR
Vi — Yk

I 7
xg

We denote by (€3, V) the connection induced by (£2™, V™) on V, and by DR(V 5/ K, (Ex, V) =
DRy its de Rham complex (i.e. the restriction of DR(X§* /K, (£%™, V")) to V.
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We then obtain a connection (£ f, VT) on

et =j:r€ =gef Hm jau&n
A—=17

whose de Rham complex is:

DR(Y /K, (€1, V1)) = lim jiDR.
A—17

We introduce the hypothesis:

(SC)g The connection (&€ Jf, V]L) is overconvergent along Z,.

As in [Ber], we define ti;e rigid cohomology of X, with coefficients in (€ T, VT) as:
Hy(Xo /K, (€1, V1)) = H* Vi, DR(Vk /K, (€1, 91)).

We also notice that, since Yx is quasi-compact and separated, the cohomology on Yi
commutes with the direct limits ([Ber], [SGAIV]). Hence :

(22)  Hy (X./K,(€1,V1)) = H* (¥, lim j5,DRy) = im H* (Y, j5.DR).
A A

We then have a natural morphism of complexes of sheaves on Yx = Y™
jaDR —  DR(%x/K, (€T, V1))

l /
I«DR(XZ K, (€%, V™)

and the induced morphism in hypercohomology:

H'(VA/K, (62, Vy) — Hy(Xo/K, (€1, 91))
1@ /
H*(Xg/K, (&%, Ven))
(this makes sense because R?j,F = 0 (resp. R%jxF = 0) for any coherent sheaf F on

Xg* (resp. V) and ¢ > 0, since j, (resp. ja«) is a quasi-Stein map [Bal],[K]).
Our main result is the following:
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Theorem 2.4. Under the assumptions (NL)g and (SC)g the morphism @y is an iso-
morphism for any A € (0,1) for which V) is defined (i.e. for any A sufficiently close to

1).
From (2.2) and the identification :
H*(V./K,(Ex,V3)) = H' (Yk,jaDRy))

we obtain the corollaries:

Corollary 2.5. Under the assumptions of the theorem, the morphism

@ H(XZ/K, (%", V™)) — HE, (X./K, (€T, v1)

rig
is an isomorphism.
Corollary 2.6. Under the assumptions of the theorem the morphism:
@0 B H*(Xx/K,(€,V)) — Hey(Xo/ K, (€T, 91))

is an isomorphism (cf. 2.1).

Corollary 2.6 is our comparison theorem between algebraic and the rigid cohomology
with logarithmic coefficients.
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§3 The hypotheses (NL)g and (SC)g

We will illustrate by an example the role played by the two hyphoteses (NL)g and

(SC)e-

We consider the case Y = P}, perfectly analogous to the one of ¥ = any proper

smooth V-scheme of relative dimension 1. We put: D = D(0,17), D*
A €(0,1) weset Cy ={z € K| X <|z] <1}. So we now have:

cy 2% D
I/
D*

For v € K we consider the complexes:

a) = 0 — OD) — %QI(D) — 0
! ! )
b) = 0 — O(D*) —v-1—> %QI(D*) — 0
! l l
0) = 0 — OC)) - lalCy) — 0
where
V7=d+'y%.

Theorem 3.1.
1) If v € K is not a positive integer and p(y) = 1, the inclusions:

a) — b) — ¢)

are homotopy equivalences.

ii) If p(—v) = 1 then the complex a) has finite dimensional cohomology.

D\ {0}. For

Proof. i) Let us consider for example a) 5 ¢). We construct a morphism of complexes

c) 5 a):
R(Z anz™) = Z anz"
nezZ n>0
R(Z anz”—(-iz-i_) = anz"%Z

nEZ n>0



which is the left inverse of i:
Ro:= ida)

while:

tdyy—toR=AyoH,+ HyoV,
where the homotopy operator H., :
5 €)= c)[-1]
is 0 in degrees 0,2, while:

2" = (Zanz ) * (94(71) - _)
n<0
where “*” denotes the Hadamard product with respect to z72.

Now ). .o @n2z™ is analytic for |z] > v, while, by the hypothesis on 'y, g4(z71) is
analytic for lzl > 1. Thus H,, takes its values in O(C »). The same argument works for the
other inclusions.

i1) We define

HY : a) — a)[-1]

E(D D)= 3 —2am = (3 ans™)  (g(e).

7+n n>0

If p(—v) =1, HY takes its values in O(D). If v is not a negative integer nor 0,
idgy = V,HY + HTV,,

so that a) is acyclic. If ¥ = —no, no € {0,1,...} then a) contains the subcomplex

) = 0-Km —Km¥ 0,

z

d) = a).
The previous inclusion has an obvious retraction r
a)—d) > a)
which is the left inverse of j i.e.:
roj = 1idy,

while
tdgy—jor=V,0H "4+ H"0V,.

Q.E.D.
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Corollary 3.2. Under the assumptions of the previous theorem the morphisms of com-
plexes of abelian sheaves on D:

a) = 0 — Op — Q})/K<O'> — 0
] _ i) !
B = 0 — j.Ope % b — O
! o !
& = 0 — jnOc, 5 §anlb e — O

induce isomorphisms in hypercohomology:
H*(D,a)) = H*(D,b)) = H*(D,&)).
Proof. For any sheaf F which appears in the above diagram;
HYD,F)=0

for ¢ > 0. (In fact D,D* are quasi-Stein while jy is a quasi-Stein map). We are then
reduced to prove quasi-isomorphisms for the complexes of global sections, thus to the

theorem. Q.E.D. :
We will show now discuss the role played by the hypothesis (SC)ga.
Consider a system of linear differential equations of the form:

d
Se Y= G(z)y

with G(z) € Mn(K(z)). Let Zx = {a1,...,a,} be the set of singular points of Sg in P
and let Z, = {spai,...,spa,} where ' :

sp: PL — P}

is the specialization map. Then Sg defines a connection on the sheaf O™ over X§* =
P} \ Zx. When is this connection overconvergent along Z,? If we intend to sick with the

matrix G, we are forced to assume that Z, contains z = oo; then, Berthelot’s condition
involves: ’

r
Va =Pk \ | D(a;, %), re(0,1)

i=1
and the matrices giving the action of (=)™ on solutions of Sg:

d
(d:c

(GO =1, GO = @, GIm+D) = 467 | GIm)G)), Tt s ;



(SC)e (Berthelot) For each n € (0,1) 3 € (0,1), such that

lin ¢ ™ =0
v "_'WTHVAU =
(where | — |v, denotes the supnorm on V, for matrices).

Recall the Gauss norm on K(z): it is defined on K{z] as:

1) aiz'lg = Supla;|

and extended to an absolute value | — |g of K(z) by multiplicativity. It depends essentially
on the V-structure of Pl if a function f € K(z) has no poles in an open disk D of radius
1, then '

Ifle =17lp.

So, condition (SC)g implies:

(SC)g, Vn € (0,1):
, (m)

lim |——|gn™ = 0.

m—oo  m!

Condition (SC)g appears in the work of Dwork, Robba, Christol, André ([Anl), [An2],
[Ch], [Ch-Dw]), as that of convergence of the solutions of Sg in the generic disk of radius
1. This is motivated from the fact that the matrix function:

x Gim)
Usu(z) =3 G mz(t)(’” _ym

is a fundamental solution matrix of Sg at a generic unit ¢ and:

G(m)(t)l B IG(m)

m! m!

lg-

Let’s now check that (SC)g = (SC)g. Let us put, for each A € (0, 1),
G

(Xo[=)W = Pk \ U D(a;,17) C V.

=1
Then (SC)g certainly implies:

) G(m) ™
Adim | =——=lwn™ =0

15
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for each n € (0,1). So we are left to consider separated annuli around the singular points.
We may assume:

Qai,...,0q9 €D=D(O,1—), Ad41y---50p ¢D
Let

f(z)= H(f— a;)¥

be such that G € M,(O(D)). Then also f™G(™ € M,(O(D), for each m € N. For

A > max;=y,... 4 |a;| we have:

mG ™) -m G ™)
“—"ICa = “f '—“C.\ lf “C,\ < If

since |f|g =1. So, if A is also > n¥7, one has n//\N'l € (0,1) and

(m)
lGA—mNd ‘G ' la)\—mNd
m.

I

(SO)s Tim [ (™ =0
implies

: Gm)
(SCla Jm | —]c,n™ = 0.
So:

Proposition 3.3. The system Sg is overconvergent along its polar divisor iff its solutions
converge in the generic disk of radius one.

What we said should justify the following weaker, local, condition on a system on

D = D(0,17):

Lg xiy = Gy
dr

with G € M,(O(D)). We put, as before,
d
m m —
for m € N. We consider the condition:

(SC)1. Vn € (0,1), for each affinoid V C D

We also define the type of the systeni Lg at 0 as:

| p=T[on  (e0.1)
if det(z — G(0)) = [I(z — 7).

Our main result in this framework is:
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Theorem 3.4. Assume the system L¢g , G € Mn(O(D)) satisfies condition (SC)y. Let
p be the type of Lg at 0. Then any formally meromorphic column solution y of Lg at 0,
is p-adically meromorphic for |z| < p.

Corollary 3.5. Under the assumptions of the theorem, assume also that the eigenvalues
of G(0) are p-adically non-Liouville. Then, the formally meromorphic solutions y of Lg at
0 are meromorphic in D.

Consider the condition:

(NL)y, The additive subgroup A of K generated by the eigenvalues of G(0), consists
of p-adically non-Liouville numbers.

Corollary 3.6. Assume conditions (NL)y, and (SC)y, hold for Lg. For Vg = d + G-&‘i;,
consider the diagram of abelian sheaves on D:

@) = 0 — Opll] TS 0L,e0p — 0
! \ 1

b = 0 — 5.0B 5 Qb ®0B) — 0
! ! 1

0 = 0 — 503 5 (L, ,x®0B) — 0

The morphisms a) — b) < ¢) induce isomorphisms of hypercohomology groups over D.

Proof. It consists of the following steps:

1) Use the formal theory of logarithmic systems to formally reduce to upper-triangular
systems.

2) Use corollary 3.5 to show that the formal equivalence referred to in step 1), is in
fact convergent on D.

So, we may assume that G is upper-triangular.

3) Reduce to systems of rank 1, via the spectral sequence of filtered complexes.

4) Apply the corollary to theorem 3.1, after translating the exponents by an integer,
if neceded (multiplication by zV is an isomorphism). Q.E.D..

We now come to our main result:
Corollary 3.7. Theorem 2.4 and its corollaries hold for Y = P1.
Proof. Recall that in theorem 2.4 we fixed a A € (0,1) and that we had:

Vs = By \ | Dlas, 1) 2B
i=1

We deal with a connection (£, V) with logarithmic singularities at ay, ..., a, (assumed to
lie in distinct residues classes).
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We are supposed to examine:
F* = j . DR(XE /K, (E%™, V°™) = Fx = IDR(VA/K,(Ex,V2).
We choose 7 € (), 1) and consider the admissible covering W of Pl
W= {V,,D(a;,17),...,D(a,,17)}.

We have that the restriction:
't.]v" :fl.v,, ~ f;]V.,

is the identity, while on each disk D(a;,17) we are in the situation of corollary 3.6.
Our result follows from the spectral sequence of hypercohomology associated to the cov-
ering W:

EPUF*) = H*(W,hU(F*)) = H*(Pk, F*)

where h?(F*) denotes the presheaf:
U+— HY(U,F*)

(and similarly for Fy).
The morphism of spectral sequences:

EP*(F*) — EX*(F3)
is in fact an isomorphism at the E, level. (In fact, since |
HY(U,G)=0 VYg>0
for any open set U of the nerve of W and any sheaf G under consideration, the Cech

bicomplexes of W with coefficients in F* and F3, actually calculate the hypercohomology
of P1). Q.E.D.
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§4 Hints for the general case.

We point out some useful facts about the general case.
1) Ezistence of tubular neighborhoods of radius 1 of Zx in Yir ([Ba-Ct3]).
We may refine the covering of Y% ’

U= {Uklveu

obtained from the original Z{. This will be done in connection with a given V, A € (0,1),

as in theorem 2. So, let U € U be as in section 2, with coordinates (z1, ..., Zn) and assume
the branches of Zx meeting Uy are Z}é), e ,Zg) of equation, resp., z; =0,...z, =0.

Let Ty ={1,...,v}, S C Ty. For n € (), 1), we put:
Usy={p €Uk : |ai(p)l <1if i € S and |zs(p)| 2 0, if i € Ty \ S}

the main point is:

Proposition 4.1. Ug, is a trivial bundle in open unit polydisks of relative dimension
s = 8 over a smooth affinoid space Vs, = SpmAs 5.

Proof. It is an immediate consequence of the following:

Leémma 4.2. Let S, Z, P be formal V-schemes of finite presentation and
Z < P

| 7

be a closed immersion of S-objects where Z — S (resp. P — S) is smooth of relative
dimension d (resp. d+ s). Assume (always true locally on P) that S = SpfA, P = SpfB,
Z = SpfC are affine and that C = B}J where J = (f1,..., fs) is generated by s elements.
Then, if i : Zx —]Z,[p denotes the closed immersion, there exists a retraction o :|Z,[p—
Zx and an isomorphism: :
]Zo[p—'l)ZK x D?

such that the diagram: (idz . ,0)
J"i ~ l?"x
Zolp = Zx
commutes.
Q.E.D.

II) The formal and convergent theory of systems with logarithmic singularities on
standard spaces ([Ba-Ct2]).
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Here A is regular Tate K-algebra with no zero-divisors, and we define

D} = SpmA x D°.

We consider systems of P.D.E.’s of the form:

Leg

dy=Goy 8 € Der(A/K)

9 s
za(..a;.)ay = Gay a€N

where Gp,Go € Mp(O(D%)) satisfy the usual integrability conditions.

(i.e.

We consider conditions (NL)yg, and (SC)y, on Lg. We then develop a refined formal
on Afz;,...,z,]) and convergent (i.e. on O(D?%)) theory of such systems, analogous

to the one for ordinary systems.
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