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A differential equation associated with
the Horrocks-Mumford bundle

Ak e X% Clkeshi SATO)
(RiLS 32 )
0. Introduction

Let X be a bounded symmetric domain and let I' be a group
which acts on X discontinuously. M denotes the quotient space
X/TI'. 7 is the projection from X to M. We consider the inverse
map 7! of the projection w. We call it the developing map.

X : a bounded symmetric domain

Il
M =X/T

Let me give a problem.

PROBLEM. Describe the developing map m in terms of differen-
tial equation.

Let me give a classical example. Let X be the upper half plane
H and let I' be Schwarz’s triangle group i.e. its fundamental
region is the sum of tw%i;gérbolic triangles. We name its
angles m/n1, m/ny and m/n3. And we assume that n;, ns and
ng are integers greater than 1. Then the quotient space M is
isomorphic to one-dimensional complex projective space P;(C).

X=H

I' : a Schwarz’s triangle group
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In this case we have an answer to the problem. We consider
a hypergeometric differential equation on P;(C).

2
a:(:c——l)g;%+{’y+(a+,3—l)x}j—;—aﬁz=0

And we assume that the parameters o, 3 and v satisfy the fol-
lowing conditions.

1 1 1
|1—7|_;;7 h’—a_ﬂl_;{;a |a—ﬂ|—n—3

Let w; and wo be the linearly independent solutions of the
hypergeometric equation. Let p be the multivalued map from
P;(C) to H that corresponds w;(z)/w2(z) to z.

p:P(C)— H
2 wl(z)
’UJQ(Z)

THEORM. (GauB, Schwarz) The map p gives the developing map
-1
w1t

We shall consider the case that X is Siegel upper half space Hs
of genus two and M is the three-dimensional complex projective
space P3(C).



1. Horrocks-Mumford bundle

We give a survey on the geometry of Horrocks-Mumford bundle.
Sometimes we abriviate Horrocks-Mumford to HM. The HM-
bundle F is a holomorphic vector bundle of rank two on the
four-dimensional projective space Py(C).

f

Py (C)

We don’t explain how to construct HM-bundle, because we do
not need it for the following argument.(See [HoMu].) So we only
give some properties of the HM-bundle without proof.

The space S of its holomorphic sections is four-dimensional.
For generic section s in S, the zero set X of s is an abelian
surface with (1,5)-polarization and level-5-structure. So we have
a map p from S to the moduli space of such a abelian surfaces.
It maps s to X, . Horrocks and Mumford proved that this map
is birational.

On the other hand there is another way to construct such a
moduli space. The quotient space of Siegel upper half space Ho
by certain discontinuous group I3 5 gives this moduli space. We
omit the description of the group I 5. (See [HL].)

abelian surface
(1,5)-polarization = Hy/IN5

level-5-structure

Then we obtain the following diagram.

Hy I

lm
B(C)

This projection 7 has branch locus.
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ProproOSITION. [BHM] The projection © branches along the sur-
face D with the branch index two, where D is given by

2110 — 52,820 + 202, 20225 — 152, 232

—10z1%29% — 4521820233 + 521525 + 162,525°

— 1402522325 + 15521 ° 29232 + 2721°23° — 22,°

— 40z1% 2ot 3% + 5021 202 + 29521 20215 — Tz 2075

— 15z, %23* — 80213225 + 2202, 320t 23 + 25213293 23"

— 515213252232 — 180213 z023% + 521312 + 502132352

+ 20021 225° 132 — 152, 225* — 315212203232 + 15521225223
+ 2202122025 — 10x12x32 - 180x1m25x3 — 125z, 20% x5

+ 29521293232 + 20021 22%23° — 1521292 — 1402, 29233

— 80z,23% — Bz + 2725° + 2520% 25>

— 4529323 — 40x5223* + 2029232 + 1623° + 1.

They find this by studying the degeneration of abelian sur-
faces. We will answer the problem for this diagram.

2. Uniformizing differential equation

The Siegel upper half space Hy of genus two is isomorphic to
the non-compact dual of the three-dimensional hyperquadrics
@3 in four-dimensional projective space Py(C). Therefore H, is
naturally embedded in hyperquadrics.

We consider a system of differential equations (EQ) on P;(C)
of rank five i.e. it has exactly five linearly independent solutions.
Let sg, ... s4 be the five linearly independent solutions. Then
we obtain a multi-valued map @ from P;(C) to P4(C). It mas
z € P3(C) to the ratio [so() : - - - : s4(2)] of the solutions.

Ha — @Q° — P4(C)
Iy /o
P3(C)



Definition. When the above diagram is commutative, we call
this equation the uniformizing differential equation.

Our problem is to find the uniformizing differential equation.
Let z1, x5 and z3 be inhomogeneous coordinates of P3(C) and
let z be a solution of UDE. Since the rank of UDE is five, every
derivative of z can be expressed by linear combinatlon of five

basis. So we fix the basis {z, axz , g{;, ;’;3, 52 3w } There are

no essential reason why we choose the base 8:{,‘8 55;- Llhen the

uniformizing d1fferent1al equation can be written in the following

form.

0?2 0%z p 0z 0,
(‘) O0x;0z; = 9ij m + Z Azj Oz}, + A

PROPOSITION. The conformal class of the tensor ¢ = 3 g;;dz;dz;

does not depend on the choice of local chart. And the pull-back
of the tensor field by the projection © gives the canonical con-
formal structure on Ho which is given by *(dz)A(dz), where A
is the matrix which defines the hyperquadrics i.e. Q® = {z €

P4(C);tzAz = 0}.
™ (¢) = *(dz)A(dz)

So in order to obtain the coeflicients g;;, we have to express
*(d2)A(dz) in terms of the inhomogeneous coordinates z, z2

and z3.

Let 6 be a function s.t. det(e’g;;) = 0 and let I}, R;; and
R be Christoffel symbol, Ricci tensor and Scalar curvature with

respect to e?g;; respectevely. S;; is the Schouten tensor defined
by

R
Sij = Rij — 7 ¢'gs5.

Now we introduce a theorem due to Sasaki and Yoshida.

THEOREM. Let ¢ be conformally flat. When we put

A’c I”“ 9i; 75
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A?j = Sfj — 9ij513

Then (#) is integrable and of rank five. And the image of ® is
in a hyperquadrics.
Im(®) C Q3.

So if we have the coefficients g;;, we can calculate other coef-
ficients Ai-“j according to the theorem. In order to calculate g;;,
the following properties of ¢ are effective.

(1) The tensor ¢ is conformally flat.
(2) Each g;; is a polynomial of degree 4
(3) |

>, 8D

L Ox;
=1

A,‘j =0 (mod D)

where Ay, is the (k,1)-cofactor of the matrix g;;.

(4) det{gs} = D.

(5) The tensor field ¢ is invariant under the action of the
alternating group As of degree five.

So these conditions enable us to obtain the coefficients g;;.

MAIN THEOREM. The coefficients g;; of UDE are given by

g1 = —2(z1%20% + 21223 — 2:c'1a:2w32 — 21 + 332° — 224913)
g12 = 221329 — 3212232 + 221292 + 4123 — 1

913 = 1° — 31%2273 — T172 + 522773 — 475°

go2 = —2(z1* — 71229 — 52123% + z3)

g23 = 3(z1°w3 — 1% — 5x12073 + 22)

g3z = =2(z1°z9 — 5z179% — m173 + 1)

g21 = 912, 931 = G913, 932 = g23.

Of course it is not so difficult to calculate Ai-“j if we use com-

puter. However we omit them because they are very compli-
cated.
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