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§1. Introduction. Appell's function Fy(a,b,b';c,c';x,y) is a

solution of the system of differential equations

2 _
[x(l—x)ax-xy8x8y+(c-(a+b+1)x}8x-by8y—ab]u = 0

2_ . I ] - [ - 1 =
[y(l-y)ey xy6x8y+(c (a+b +1)y}8y b xax ab'Ju 0.

Let P2 pe the 2-dim. projective space and let €=(&1:€2:£3) be

it homogeneous coordinate. Putting (X,y)=(1~€2/il,ﬁ3/€1), we may
regard the system of differential equations above as that on Pz. Then

it has singularities along the set

-& - -
172 3(€2 *3)(53 g1)(g1 52) 03

’ 2
which consists of six lines. Let Z be the blowing up of P at

four points (1:0:0), (0:1:0), (0:0:1), (1:1:1) where three of lines

2
of S intersect. Let m be the natural projection of Z to P~ and

put § = n_ls. Then § consists of ten lines and each intersecting
point of some of ten lines is a normal crossing point. The purpose

of this talk is to study the structure of the pull back of the system

in question on the space Z.

§2. The blowing up space of P2. We begin with constructing the space
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Z concretely. (For the details, see [S]1.) A model of Z 1is defined
by

2 2 2
((gsnag)ep XP XP ,5101—g2n2-§3n3, g §1&2§2 g g "'O g +§ +§ ‘O}

and n(¢€,n,%) = &€ is the projection of Z to P2. Moreover we

define lines L(ij) (1<i<j<s) of Z by

L(12) 2=ﬁ3, n1=n2=n3/ L(13) : 52=53=n1=0/
3 1.2

2=n3=n1=0/ L(25) : £3=n1=n2=0/ L(34) : 3

3=€1, n3=n1/ L(45) £1=&2, ny=Ny-

£
M =f = = M = = = M = = =
L(14) : §_=& =n,_=0/ L(15) : El Ez n3 0/ L(23) : & =n n3 0/
L24) g £
g

L(35)

Then S 1is the union of the lines defined above. It is clear from

the definition that L(ij) and L(i'j') intersect if and only if i,

t

i, i'y, j' are mutually different. In particular, if

{i,,1

1 1

i,

g1y 5} ={1,2,3,4,5), the lines intersecting with L(iliz)

2

are L(1314), L(13 5), L(14 5 and their intersection is normal
crossing. In the sequel, we denote by [ijl[i'j'] the intersecting
point of two lines L(ij) and L(i*'j') 1if they intersect. There
are 15 normal crossing points of the set S. (See PICTURE I)

We now briefly review the action of 65 on Z. The symmetric
group 65 on five letters is generated by permutations j=(j,j+1)
(j=1,2,3,4). As is known, P2 admits a birational action of 65 in

the following manner:

. . . _’ -1 -1
Sl_' (El.ﬁz.iS) (ﬁ 2 €3 ),
Sy ° (€1:€2:§3) » (B8 &, 18 -E)

s, (&1:52:€3) (ﬁzzﬁlzia).
Sy : (&1:52:53) - (€1:53:€2).
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Then, there is a holomorphic action Ej (j =1,2,3,4) on Z so that
ﬂ'gj = gj'n and this induces an 65~action on Z. This action
preserves the set S invariant so that it induces the permutation of
the ten lines. Because of the naming of the ten lines, we find that
if g€65 permute i, j (1<i,j<6) to i', j' respectively, then g
maps L(ij) to L¢i'j'). In particular, the 65-action on ten lines

is transitive. Moreover, the 65-action on the 15 normal crossing

points are also transitive.

§83. The idea of the study. Under the identification (X,y) =
(1-52/21,53/51) given in 8§81, the system in question is defined in a
neighbourhood of the point P = [251[34] of the space Z. Modifying

differential equations slightly, we introduce the.system

[bx(bx+c—1)-x(bx+by+a)(bx+b)]u = 0,

[b_(b_+c'-1)-y(b_+b_+ad)(d_+b')lu = 0,
y v X Yy y

which we denote by M(Z) (Z= (a,b,b';c,c')) in the sequel. Here

bx=x8X, by=y8y. Needless to say, the system M(X) 1is defined in a

neighbourhood of the point P. Therefore, what we have to do first
is to extend the system M(X) on the whole space Z. To accomplish
thisrprogram, it is sufficient to write down the system near each of
15 normal crossing points of S. To explain next purpose, we need
some preparation. Let P_ be one of 15 points in question and let

0

(xo,yo) be a local coordinate at P

PO and that

0 such that (xo,yo) = (0,0) is
xO = 0, Yo = 0 are local defining equationsof two lines

of S. Moreover, let Rju =0 (j=1, 2, 3,...) be the system of

differential equations defined in a neighbourhood of P0 which is
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the analytic continuation of M(X). Then it follows from the
definition that there are holomorphic functions fj(xo,yo) near PO

with the condition fj(0,0)=1 and pairs of numbers (uj,Bj) such that
a .

~ B i
fj(xo,y0)=x03y03fj(xo,yo) (j=1,2,3,4) form linearly independent

solutions to Rku = 0 (k =1,2,3,...). It is important to determine

the pairs (aj,Bj) which are called exsAonents at P Moreover, the

0

restriction of the function fj(xo.yo) to each of the lines xO = 0,

y0 = 0 satisfies a certain ordinary differential equation which is
called fAe induced differentiat eguation. The next purpose is then

to deterimine the exponents and the induced equations. The third

purpose is to clarify the relationship among Appell’'s functions F2,

F3 and Horn's function H2.

84. The isotropy group of the point P. 1In the sequel, we assume
that Z4e Aaramefers a,b,b',c,c' are "speneric" 90 thal the arsuments

below 96 well.

Let H be the isotropy subgroup of 65 at the point P. Then

H 1is generated by g3, and ByBy- In particular, H = szZ4. Writing
down the actions of g3, 898y with respect to the local coordinate

(X,y), we find that g3:(x,y) » (x/(x-1),y/(1-x)), g2g4:(x,y) = (y,x).
Corresponding to the H-action, solutions to M(Z) are transformed to

other solutions. Then we obtain well-known Kummer type formulas for

Fz(a,b,b’;c,c';x,y) (cf. [AK1):

Fz(a,b,b‘;c,c';x,y) =(1-x)-aF2(a,c-b,b';c,c’;x/(x—l),y/(l-x))

=(1—x)_aF2(a,b,c'-b’;c,c';x/(l-y),y/(y-l))

=(1—x—y)-aF2(a,c-b,c'-b';c,c';x/(x+y—1),y/(x+y—1))
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Also H acts on the space of parameters as follows: g3:b «— C-b,
8,8," b < b', ¢ « ¢'. This means that f4Ae dgysfem M(X) admnifs an

H-action.

§5. Analytic continuation of M(Z) near the points A, B. VWe
concentrate our attention to the two points A = [131[25], B =
[{131024]1 on L(13). It follows from the definition that among 15
points, 12 points except P, Q = [451(23]1, R = [241[35] are
transformed to A or B by the H-action. We are going to write down

analytic continuations of the system M(Z) near points A, B.

(1) The ogyatem near the Aoint A.

We take (x (£2/€1,€3/€2) as a local coordinate at A.

AiyA)
From the definition, x = l-xA, Y = XY, and xA = 0, yA = 0 are
local defining equations of lines L(13), L(25), respectively. Ve

introduce a system of differential equations MA(Z) on the

(XA,YA)-space by

[(b_ -db_ )Y(b_ +a+b-c)-x,(d_ +a)(d_ -b_ +b)Ju = 0,
o YA *a ATy Xp Ya

(b (b +c'-1)-y (b =db )b +b')-x ¥y, (b_ +a)d _ +b")lu = 0.
Yo Ya AXy Yp Yy ATA Xy Ya

which is same as M(X) by the coordinate transformation

(X,y) = (xA,yA) on an open dense subset the (x -space where the

DA
A’TA
Jacobian is non-singular. There are fundamental solutions of MA(Z)

. c-a-b . 1-¢'.1l-¢"
of the forms: fA,l(xA’yA)’ X, fA,z(xA’yA)' Xp Y fA,3(xA'yA)'
¢c-a-b_1l-c¢' . .
xA yA fA,4(XA’yA)’ such that each fA,j(xA’yA) is holomorphic

near the point A and that fA j(0,0) = 1. By computing the induced
’

equations, or by direct computation, we obtain the concrete forms of
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restrictions of f. .(x.,y.) to the lines L(13) (x, = 0), L(25)
A,j A TA A

(yp = 0):

fA,I(X’O) = 2F1(a,b;a+b—c+1;x),

£a,2(%,0) = gFj(c-a,c-bjc-a-b+1;x),
fA’3(x,0) = 2F1(a—c'+1,b;a+b—c—c +2;X),
fA’4(x,0) = 2F1(C+C -a+l,c-bjc+c'-a-b;x),

= ; f ’ = -Gy '; '; ’
fA,l(O’y) 1 A,2(0 y) 2F1(a+b c,b';c':y)

f ’S(O,y)

A 1, fA’4(O,y) = 2F1(b -c'+l,a+b-c-c'+l;2-c';y).

The system MA(Z) seems unfamiliar but by changing coordinate

systems, we find that M(X) 1is reduced to a system contained in

Horn's list. In fact, the following hold:

b-c¢ ' - _ [ -
£, (X0 ¥) = (1=x,)7 °H,y(asb-c,b’,c=b,1-b,c'5y,.X,/ (1-x,)),
£a,4 (X7 Yp)

— - b"C - - ] [ [ - - - LIS -
= (1 xA) Hz(a+b c~-c'+1,b'-c'+1,c-b,1-b,2-C ,yA,xA/(l xA)),

where Hz(a,b,c,d,e;x,y) is one of Horn's functions (cf. [EMOT,

P-2241). Since the element g4g3g2g3g4 = (2 5) (pemutation of 2, 5)

is contained in H and fixes the point A = [131[25], we obtain a
Kummer type formula for the function H2:

Hz(a+b-c,c'—b‘,c-b,l-b,c‘;yA/(yA-l),XA(I-yA)/(l-xA))

- - at+b-c¢ - t - - t. -
= (1 yA) Hz(a+b c,b',c-b,1-b,c ,yA,xA/(l XA)).
(11) The syotem near the Aoini B.
We take (XB.YB) = (53/51.52/23)‘ as a local coordinate at B.

From the definition, XB = XAyA’ yB = l/yA and xB = 0, YB = 0 are
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local defining equations of lines L(13), L(24), respectively. We

introduce a system of differential equations MB(Z) on the

(xB,yB)—space by

[by (bx +a+b—c)-xByB(bx +a)(by +b)Ju = 0,

B B B B
[byB(be—byB+b')+yB(be—byB)(bXB—byB+c'-1)
-xByB(bXB+a)(be—byB+b')]u = 0,
[(be+a+b—c)(bXB—byB)(be-byB+c’-1)

—xB(be+a)(be—byB+b’)(bXB-byB+a—c+1)]u =0

which is same as MA(Z) by the coordinate transformation
x , i ’ t ’ -

A yA) (xB yB) on an open dense subset of the (xB yB) space where
the Jacobian is non-singular. We note that the third differential
equation above follows from the former two when yB # 0. As

fundamental solutions of MB(Z), we take the following ones:

£« y, x57%7P ¢ y, x17%e ¢
B,1*8° Y8’ *p B,2%p*Yp’r *p Ip,3*p¥p):

-a-b_b'+c-a-b . .
xg a yB c-a fB,4(XB’yB)’ where each fB,j(XB’yB) is holomorphic

near B and fB j(O,O) = 1. By computing the induced equations, we
find that

., . (x,0) = »b',a-c+lja+b-c+l,c';x),

B,1 ) 3F2(a b',a-c+l;a+b-c+l,c';X)

fB,Z(X’O) = 3F2(c-b,1—b,b +c-a-b;c-a-b+l,c+c'-a~-b;x),

fB,3(X’O) = 3F9(a—C’+1,b'-c'+1,a—c—c'+2;a+b-c-c'+2,2-c';x),
1

&
’

fB,4(x,O) =

fB,l(O’y) =1, fB,Z(O’y) = 2F1(a—b,a+b—c—c‘+1;a+b-b'-c+1:y),
= I'e = [} t oAt PO W} - -

fB,B(O’y) 1, fB,4‘O’Y) 2Fl(b ,b'-cC fl,p +c-a-b+l;vy).
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The system HB(E) seems unfamiliar but by taking another coordinate
system, we find that MB(Z) is reduced to a system for Appell's

function F that is, the following hold:

39

fp,4(Xp»¥p?

)b-c

é (l—xByB F3(b,c-b;b’-c'+1,1-b;b'+c—a-b+1;yB,xByB/(xByB-l)).

It is clear from the expression above that fB,4(XB’yB) is constant

on the line L(24):yB = 0.

8§6. The structure of the system on Z. 1In the previous seciion, we
defined systems near points A, B. Moreover, under the H-action, any
of 12 normal crossing points of S except P, Q, R 1is transformed
to A or B. Therefore, we can define a system near such a point.

In this way, we can construct a system H(Z) on the space Z which
is an analytic continuation of the system M(X).

It is possible to compute the exponents at each of the 15 points.

The result is summerized in TABLE 1I.

Note on TABLE I. Let P, be the intersecting point of two lines

L¢ij), L(i'j'). We take a local coorninate (xo,yo) near PO with

the conditions (1) PO = (0,00, (2) L(ij) = {XO = 0}, L(i*i") = {yg =

0}. Then there are four linearly independent solutions to H(X) of

o. 8.
J J .
£ ] = b I Y t s 9,
the form XO yo hj(xO yo) (] 1, 2, 3, 4) such that each hJ(XO yo)

is holomorphic in a neighbourhood of (xo,yo) = (0,0) and that

hj(0,0) = 1. In TABLE I, the point in question is written by

[ijlli'j'l] and the pairs (aj.Bj) (j =1, 2, 3, 4) are written in

the right hand side of the same line.
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TABLE 1

Intersecting point Exponents
[341([25] 0,0),1-¢,0),¢0,1-¢"),1~-c,1=-c")
[13]1[25] (0,0),(c-a-b,0),(1-¢c',1-¢c'), (c-a-b,1-c*)
[13]1[24] (0,0),(c-a-b»,0),1-¢c',0),(c-a-b,b'+c-a-b)
[13]1[45] (0,0),(c-a-b,0),(1-¢*,0),(c~a-b,c+c'~a-b-b')
[14]025] (a,0),(b,0),(a-c'+1,1-¢c'3), (b,1-c')
[147[23] (a,a),(b,a),(a-c'+1,a),(b,b+b")
[14]7([35] (a,0),(b,0),Ca-c'+1,0),(b,b+c'-a-b")
[123034] (0,0),¢(c'-a-b',0),(1-¢c,1-c),(c'=-a-b',1-¢)
[123(35] 0,0),¢(c'-a-b',0),(1-c,0),(c'-a-b',b+tc'-a-b")
[12][45]) (0,0),¢c'-a-b',0),(1-¢c,0),(c'-a-b',c+c'-a-b=-b')
[151034] (a,0),(b',0),(a~-c+l,1-¢) . (b',1-¢)
[151[23] (a,a),(b',a),(a-c+l1,a),(b',b+b"')
[15][24] (a,0),(b',0),(a-c'+1,0),(b',b'+c-a-b)
[23]1([45] (a,0),¢(a,0),(b+b*',0),(a,c+tc'-a-b-b')
[35]1[24] (0,0),¢(0,0),(0,b'+c-a-b),(b+tc*'-a-b"',0)

The following results are consequences of the arguments in 884,5.

(6.1) Four linearly independent solutions at P = [25]1[34] are

expressed by Appell‘'s function F2.

(6.2) The four points A = [13](02561, [141(251, [(12]1[34]1, [(151[34]
form an H-orbit. Let AO be one of the four points. Then two of

the fundamental solutions at A0 are expressed by Horn's function H2.

(6.3) We consider the four lines L(24), L(35), L(23), L(45) which



75

form an H-orbit. From the definition, Q@ 1is the intersection of
L(23) and L(45) and R is the intersection of L(24) and L(35).

Let LO be one of the four lines above. Then there is a unique
solution f to the system M(Z) (up to a constant factor) defined
in a neighbourhood of the line LO such that "the restriction"” of f
to the line L is non-zero constant. 1In other word, we consider

0
the space ZL which is obtained from Z by blowing down along the
0 ,

line LO. Then there is a solution f' to the system on ZL
0

(obtained from ﬁ(Z)) such that f is the pull back of f'. The
solution f is expressed by Appell's function F3. In this sense,

drrell 9 Ffunction F3 L9 altached L0 a Line on Z.

(6.4) The exponents of each of 15 normal crossing points except Q, R
are multiplicity free. Now we concentrate our attention to the point
R. Then there are two linearly independent holomorphic solutions at
R (cf. TABLE I). It is hard to separate these two solutions. This is
an obstruction to the determination of connection relations among

fundamental set of solutions at 15 normal crossing points.

§7. Connection formulas. Let P P be normal crossing points of §

1’ 72
and let fP j (j =1,2,3,4) be fundamental solutions to M) at
i’
P (i =1, . Y = i = .
; i 1, 2O We put FP‘ (fP',1’fP,,2’fP_,3'fP.,4) (i 1, 2O

1 1 1 1 1

Then there is a matrix CP P () of order 4 depending only on X
‘ 2

1’
such that F = F_C ). It is an interesting problem to
P P, P_,P 4 .
2 1 "1°°2
determine these matrices C () for various P_, P_. This is
Pl’PZ 1 2

reduced to that for the case where both Pl’ P2 lie on a same line
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of §,

Now we assume that P P lie on a line LO of S but Pi #z Q,

1’ 72
R (i =1, 2). Then in virtue of the results of 84, we find that "the

restriction”" of fP j to the line L0 is expressed by
i’

2F1(a,b;c;x)' or 3F2(al’a2’as;b1’b2;X)’ where Pl' P2 correspond to

the points x = 0, © on the line L respectively. Noting this,

0)
with the help of connection formulas among fundamental solutions at

X = 0 and those at x = « for hypergeometric functions _F_ (a,b;c;x)

271

and 3F2(a1,a2,a3;b1,b2;x), we find that all the matrix coefficients

of CP P (2) are expressed in terms of products of Gamma functions
1°°2 ’

of variable ZX.

Next we assume that P P lie on a line L-O of § and one of

1’ 2
1° P2 equal Q@ or R, say P1 = R. In this case, we can compute

CP P ) if we can detrmine connection formulas among fundamental
1'°2

solutions of 3F2(a1,a2,a3;b1,b2;x) at x = 0 and those at x = 1.
But as is known, to compute the last connection formulas, we need the

special value 3Fz(al,az,aB;bl,bz;l) at x = 1.
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& 1)
R /@/L_(B‘Ei)"
L(25)
L(z4) ) A P
== L (14)
Liss) % | [G4)
LUs)
PICTURE I
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