MONODROMY OF *p*-ADIC SOLUTIONS OF PICARD-FUCHS EQUATIONS *

by Jan Stienstra

Picard-Fuchs equations are differential equations coming from (algebraic) geometry. Classically their solutions can be written as *period integrals* for families of varieties. In this note we want to look at *p-adic solutions* of the same differential equations. In *p-*adic analysis we can not use period integrals to describe these solutions.

Katz-Oda construction of the Gauss-Manin connection

First recall the purely algebraic construction of the differential equations due to Katz and Oda. Let $S = \operatorname{Spec} A$ an affine scheme which is smooth over an open part of $\operatorname{Spec} Z$. Let $f: X \to S$ be a projective smooth morphism. The Koszul filtration on the absolute De Rham complex Ω_X^{\bullet} is defined by

$$K^{iullet} := \operatorname{image}(f^*\Omega^i_S \otimes \Omega^{ullet-i}_X o \Omega^ullet_X).$$

Then

$$K^{0\bullet}/K^{1\bullet} \simeq \Omega^{\bullet}_{X/S},$$

$$K^{1\bullet}/K^{2\bullet} \simeq f^*\Omega^1_S \otimes \Omega^{\bullet-1}_{X/S}.$$

The Gauss-Manin connection

$$\nabla: I\!\!H^m(X, \Omega_{X/S}^{\bullet}) \to \Omega_S^1 \otimes I\!\!H^m(X, \Omega_{X/S}^{\bullet})$$

is the boundary map in the hypercohomology sequence associated with the exact sequence of complexes

$$0 \to K^{1\bullet}/K^{2\bullet} \to K^{0\bullet}/K^{2\bullet} \to K^{0\bullet}/K^{1\bullet} \to 0$$

^{*}details for this note are presented in

J. Stienstra, The generalized De Rham-Witt complex and congruence differential equations, in: Arithmetic Algebraic Geometry; Progress in Math. 89; Birkhäuser 1991

J. Stienstra, M. van der Put, B. van der Marel, On p-adic monodromy, to appear in Math. Zeitschrift 1991

From this we see in particular

$$\operatorname{image}(I\!\!H^m(X,\Omega_X^{\bullet}) \to I\!\!H^m(X,\Omega_{X/S}^{\bullet})) \subset \ker \nabla$$

Let $Diff_S$ denote the algebra of differential operators on A relative to Z and let $Diff_S'$ be the subalgebra generated by the derivations of A. Then the Gauss-Manin connection defines a Lie algebra homomorphism

$$\nabla : \operatorname{Der} A \to \operatorname{End}_{\mathbf{z}} \left(I\!\!H^*(X, \Omega_{X/S}^{\bullet}) \right)$$
$$\nabla(D) = (D \otimes 1) \circ \nabla$$

which extends to an algebra homomorphism

$$\nabla: \mathrm{Diff}'_S \to \mathrm{End}_{\mathbf{z}}\left(I\!\!H^*(X, \Omega^{\bullet}_{X/S})\right)$$

In other words: the Gauss-Manin connection makes $\operatorname{End}_{\mathbf{z}}\left(I\!\!H^*(X,\Omega_{X/S}^{\bullet})\right)$ a module over Diff_S' . Linear relations in this module are Picard-Fuchs differential equations.

For our treatment of p-adic solutions of we use **the generalized De Rham-Witt complex** $\mathcal{W}\Omega_X^{\bullet}$. This complex can be constructed for every scheme X on which 2 is invertible. It is a Zariski sheaf of anti-commutative differential graded algebras with the following structures and properties:

- all degrees ≥ 0 . $\underline{\mathcal{W}}\Omega_X^0 = \underline{\mathcal{W}}\mathcal{O}_X$ is the sheaf of generalized Witt vectors on X
- For all $N \geq 1$ there is a graded algebra endomorphism F_N on $\underline{\mathcal{W}\Omega}_X^{\bullet}$ (F for Frobenius). These satisfy

$$\begin{array}{rcl}
F_N F_M &=& F_{NM} & \forall N, M \\
dF_N &=& N F_N d & \forall N
\end{array}$$

where $d = \text{differential of } \underline{\mathcal{W}\Omega}_X^{\bullet}$

• Let $\widetilde{\Omega}_X^{\bullet} := \bigoplus_{i \geq 0} \Omega_X^i / (i! \text{-torsion in } \Omega_X^i)$ where Ω_X^{\bullet} is the De Rham complex on X rel. Z. Then there exists a homomorphism of sheaves of differential graded algebras

$$\pi: \underline{\mathcal{W}\Omega}_X^{\bullet} \to \widetilde{\Omega}_X^{\bullet};$$

such that $\pi: \underline{\mathcal{WO}}_X \to \mathcal{O}_X$ gives the first Witt vector coordinate.

• $\forall a \in \mathcal{O}_X \quad \exists \underline{\underline{a}} \in \underline{\mathcal{WO}}_X \text{ s.t. } \underline{\pi}\underline{\underline{a}} = a$

$$F_N\underline{\underline{a}} = \underline{\underline{a}}^N \quad \forall N, \qquad \underline{\underline{a}} \cdot \underline{\underline{b}} = \underline{\underline{a}}\underline{\underline{b}} \quad \forall a, b$$

Because of $dF_N = N F_N d$ we have a homomorphism of differential graded algebras

$$F_N: \bigoplus_i \underline{\mathcal{W}}\Omega_X^i[-i] \to \underline{\mathcal{W}}\Omega_X^{ullet}/N$$

equal to F_N in each degree. This fits into the following commutative diagrams

$$\bigoplus_{i} H^{m-i}(X, \underline{\mathcal{W}}\Omega_{X}^{i}) \xrightarrow{F_{N}} I\!\!H^{m}(X, \underline{\mathcal{W}}\Omega_{X}^{\bullet}/N)
\downarrow \qquad \qquad \downarrow \pi
\downarrow \tau_{N} \qquad I\!\!H^{m}(X, \Omega_{X}^{\bullet}/N)
\downarrow \qquad \swarrow \downarrow 0
I\!\!H^{m}(X, \Omega_{X/S}^{\bullet}/N) \xrightarrow{\nabla} \Omega_{S}^{1} \otimes I\!\!H^{m}(X, \Omega_{X/S}^{\bullet}/N)$$

$$\begin{array}{cccc}
\mathbf{H}^{m}(X, \underline{\mathcal{WO}}_{X}) & \xrightarrow{F_{N}} & \mathbf{I\!H}^{m}(X, \underline{\mathcal{W}\Omega_{X}^{\bullet}}/N) \\
F_{N} \downarrow & & \downarrow \\
\mathbf{H}^{m}(X, \underline{\mathcal{WO}}_{X}) & \mathbf{I\!H}^{m}(X, \Omega_{X}^{\bullet})/N \\
& & \downarrow & \downarrow \\
\mathbf{H}^{m}(X, \mathcal{O}_{X}) & \downarrow & \downarrow \\
\downarrow & & \downarrow \\
\mathbf{H}^{m}(X, \mathcal{O}_{X})/N & \leftarrow & \mathbf{I\!H}^{m}(X, \Omega_{X/S}^{\bullet})/N \\
& & \downarrow \nabla \\
& & \Omega_{S}^{1} \otimes \mathbf{I\!H}^{m}(X, \Omega_{X/S}^{\bullet}/N)
\end{array}$$

Assume:

 $S = \operatorname{Spec} A$ smooth over open part of $\operatorname{Spec} \mathbf{Z}[\frac{1}{2}]$

 $f: X \to S$ projective smooth morphism, relative dimension r all $\mathrm{H}^j(X,\Omega^i_{X/S})$ are free A-modules, $\mathrm{H}^r(X,\Omega^r_{X/S}) \simeq A$.

Then $\pi: \mathrm{H}^m(X, \underline{\mathcal{WO}}_X) \to \mathrm{H}^m(X, \mathcal{O}_X)$ is surjective. Choose:

$$\{\omega_1, \ldots, \omega_h\}$$
 basis of $H^m(X, \mathcal{O}_X)$
 $\{\check{\omega}_1, \ldots, \check{\omega}_h\}$ dual basis of $H^{r-m}(X, \Omega^r_{X/S})$
 $\check{\omega}_1, \ldots, \check{\omega}_h \in H^m(X, \underline{\mathcal{WO}}_X)$ s.t. $\pi \, \check{\omega}_i = \omega_i$
Define for $N \in \mathbb{N}$ the $h \times h$ -matrix B_N over A by

$$\pi F_N \, \underline{\tilde{\omega}} = B_N \, \underline{\omega}$$

where $\underline{\omega} = \text{column vector with components } \omega_1, \ldots, \omega_h$; similarly for $\underline{\tilde{\omega}}$. $B_p \mod p$ for prime p is known as the Hasse-Witt matrix of ...

Theorem. Suppose $P_1, \ldots, P_h \in \text{Diff}'_S$ are such that

$$\nabla(P_1)\,\check{\omega}_1 + \cdots + \nabla(P_h)\,\check{\omega}_h = 0$$
 in $IH^{2r-m}(X,\Omega_{X/S}^{\bullet})$

Then one has the following congruence differential equation

$$P_1 B_{N,i1} + \cdots + P_h B_{N,ih} \equiv 0 \bmod N$$

for all $N \in \mathbb{N}$, for $i = 1, \ldots, h$.

Idea of proof: for every derivation D on A

$$\langle \tau_N \, \tilde{\omega}_i \,, \, \check{\omega}_j \rangle \equiv B_{N,ij} \bmod N$$

$$\nabla(D)(\tau_N \, \tilde{\omega}_i) = 0$$

$$D\langle \tau_N \, \tilde{\omega}_i \,, \, \check{\omega}_j \rangle = \langle \tau_N \, \tilde{\omega}_i \,, \, \nabla(D)(\check{\omega}_j) \rangle.$$

Hypergeometric curves

Let $0 < \mathbf{a}, \mathbf{b}, \mathbf{c} < \mathbf{n}$ be integers with $\gcd(\mathbf{n}, \mathbf{a}, \mathbf{b}, \mathbf{c}) = 1$. Let $X = X_{\mathbf{n}; \mathbf{a}, \mathbf{b}, \mathbf{c}}$ be the smooth projective model, over $A := \mathbf{Z}[\mu_{\mathbf{n}}][\lambda, (\mathbf{n}\lambda(1-\lambda))^{-1}]$, of

$$y^{\mathbf{n}} = x^{\mathbf{a}}(x-1)^{\mathbf{b}}(x-\lambda)^{\mathbf{c}}.$$

The cohomology $H^1(X, \mathcal{O}_X)$ can be calculated as Čech cohomology with respect to covering of X $X_1 = \{x \neq \infty\}$, $X_2 = \{x \neq 0\}$. For a detailed description we need:

$$\alpha = \mathbf{a/n}, \quad \beta = \mathbf{b/n}, \quad \gamma = \mathbf{c/n},$$

$$\langle l \rangle = -[-\langle l\alpha \rangle - \langle l\beta \rangle - \langle l\gamma \rangle \in \{0, 1, 2, 3\}$$
$$\mathcal{J} := \{(l, j) \in (\mathbf{Z/nZ}) \times \mathbf{Z} \mid 0 < j < \langle l \rangle\};$$

[·] and $<\cdot>$ are the usual integral and fractional part functions. For $(l,j)\in\mathcal{J}$ define

$$\begin{array}{rcl} v_l &=& y^{\tilde{l}} \, x^{-[\tilde{l}\alpha]} \, (x-1)^{-[\tilde{l}\beta]} \, (x-\lambda)^{-[\tilde{l}\gamma]} \\ \omega_{(l,j)} &=& \mathrm{coho\ class\ of\ \check{C}ech\ 1-cocycle}\ x^{-j} \, v_l \\ \check{\omega}_{(l,j)} &=& \mathbf{n}^{-1} \, x^{j-1} \, v_l^{-1} \, dx \\ &=& \mathbf{n}^{-1} x^{j-1-<\tilde{l}\alpha>} (x-1)^{-<\tilde{l}\beta>} (x-\lambda)^{-<\tilde{l}\gamma>} \, dx \end{array}$$

with $\tilde{l} \in \mathbb{N}$, $l \equiv \tilde{l} \mod \mathbf{n}$. Then

$$\{\omega_{(l,j)}\}_{(l,j)\in\mathcal{J}} = \text{basis of } H^1(X,\mathcal{O}_X)$$

 $\{\check{\omega}_{(l,j)}\}_{(l,j)\in\mathcal{J}} = \text{dual basis for } H^0(X,\Omega^1_{X/S})$

Lift $\omega_{(l,j)}$ to $\tilde{\omega}_{(l,j)}$ in $H^1(X, \underline{\mathcal{WO}}_X)$ as follows. $\underline{\underline{x^{-j} v_l}}$ is section of $\underline{\mathcal{WO}}_X$ over $X_1 \cap X_2$. The Čech cocycle condition is trivially satisfied! Take

$$\tilde{\omega}_{(l,j)} = \text{cohomology class of the Čech 1-cocycle} \quad \underline{\underline{x}^{-j} v_l}.$$

Then

$$\pi F_N \, \tilde{\omega}_{(l,j)} = \text{cohomology class of the Čech 1-cocycle } (x^{-j} \, v_l)^N$$

Recall the definition $\pi F_N \underline{\tilde{\omega}} = B_N \underline{\omega}$. Thus, indexing the rows and columns of B_N with elements of \mathcal{J} , one finds

$$B_{N,(l,i),(l',i')} = 0$$

if $l' \neq lN$, whereas for l' = lN

$$B_{N,(l,j),(l',j')} = (-1)^L \sum_{k} \left(\begin{array}{c} [N < l\beta >] \\ L - k \end{array} \right) \left(\begin{array}{c} [N < l\gamma >] \\ k \end{array} \right) \lambda^k$$

here $L = j' - jN + [N < l\alpha >] + [N < l\beta >] + [N < l\gamma >].$

Then one easily checks the following congruence differential equation

$$\nabla(P_{(l',j')}) B_{N,(l,j),(l',j')} \equiv 0 \bmod NA$$

where $P_{(l',j')}$ is the hypergeometric differential operator, with $\Theta = \lambda \frac{d}{d\lambda}$,

$$\Theta(\Theta - j' + \langle l'\alpha \rangle + \langle l'\gamma \rangle) - \lambda(\Theta + \langle l'\gamma \rangle)(\Theta - j' + \langle l'\alpha \rangle + \langle l'\beta \rangle + \langle l'\gamma \rangle))$$

We now turn to **p-adic solutions**, p prime > 2. Our method is based on the commutativity of the diagram

In the limit for $r \to \infty$ it gives

$$\lim_{\leftarrow F_p} \mathrm{H}^m(X, \underline{\mathcal{WO}}_X) \to (I\!\!H^m(X, \Omega_{X/S}^{\bullet}) \otimes \mathbf{Z}_p)^{\nabla}$$

and thus we try to find p-adic solutions of Picard-Fuchs equations by "lifting against Frobenius". This amounts to solving algebraic equations!

Vectors fixed by Frobenius

Assume $\det B_p \not\in pA$. Let

$$A^0 = A[(\det B_p)^{-1}], \quad A_0 = A^0/pA^0, \quad A^{\wedge} = \lim_{n \to \infty} A^0/p^nA^0.$$

 A_0 is a direct product of domains. Fix one such component and let R be its inverse image in A^{\wedge} . Then R is complete and separated in the p-adic topology and det B_p is invertible in R.

Let P be the set of primes $\neq p$. For every scheme Y such that every $l \in P$ is invertible in \mathcal{O}_Y^* one can use the idempotent operator $E_p :=$

 $\prod_{l\in P}(1-l^{-1}V_lF_l)$ on $\underline{\mathcal{WO}}_Y$ to split off the sheaf of *p*-typical Witt vectors on Y.

$$\mathcal{WO}_Y = E_p \underline{\mathcal{WO}}_Y$$

There exists a \mathbb{Z}_p -algebra endomorphism σ of R such that

$$\sigma(x) \equiv x^p \bmod pR \quad \forall x \in R$$

There are many such σ . Given a choice for σ there is a unique homomorphism of rings

$$\lambda: R \to \mathcal{W}(R)$$

such that $\pi F_p^n \lambda = \sigma^n \quad \forall n \in I\!\!N$; here $\mathcal{W}(R)$ is the ring of p-typical Witt vectors over R and $\pi : \mathcal{W}(R) \to R$ is the projection onto first coordinate Notations:

$$\sigma(x) = x^{\sigma}, \quad F = F_p;$$

for a matrix $M = (m_{ij})$

$$M^{(p^r)} = (m_{ij}^{p^r}), \quad M^{\sigma^r} = (m_{ij}^{\sigma^r}), \quad \lambda(M) = (\lambda(m_{ij})), \quad \underline{\underline{M}} = (m_{ij});$$

for A-algebra $A' X \otimes A = X \times_S \operatorname{Spec} A'$.

Theorem

 $\exists H \in GL_h(R) \text{ s.t. } B_{p^{r+1}} \equiv B_{p^r}^{\sigma} H \text{ mod } p^{r+1} \quad \forall r \geq 0.$ $\exists \hat{\omega}_1, \dots, \hat{\omega}_h \in H^m(X \otimes R, \mathcal{WO}_{X \otimes R}) \text{ s.t. } F\underline{\hat{\omega}} = \lambda(H)\underline{\hat{\omega}} \text{ and } \pi\hat{\omega}_i = \omega_i,$ $\underline{\hat{\omega}} = \text{column vector } (\hat{\omega}_1, \dots, \hat{\omega}_h)^t.$

Fix an algebraically closed field $\Omega \supset R/pR$ and define

$$(R/pR)^{\acute{e}t} := \lim_{\overrightarrow{B \in B}} B.$$

where \mathcal{B} is the set of finite étale extensions of R/pR in Ω . For every $B \in \mathcal{B}$ there is a unique finite étale \tilde{B} over R such that $B = \tilde{B}/p\tilde{B}$. We define

$$R^{\acute{e}t}:= ext{the } p ext{-adic completion of } \lim_{ec{B} \in \mathcal{B}} \tilde{B}.$$

 $(R/pR)^{\acute{e}t}$ is an infinite étale extension of R/pR and $R^{\acute{e}t}/pR^{\acute{e}t} = (R/pR)^{\acute{e}t}$. The algebraic fundamental group $\pi_1(\operatorname{Spec}(R/pR),\Omega)$ is by definition the Galois group of $(R/pR)^{\acute{e}t}/(R/pR)$. It acts on $R^{\acute{e}t}$. σ induces an endomorphism σ of $R^{\acute{e}t}$.

$$(R^{\acute{e}t})^{\sigma} = \mathbf{Z}_p, \quad (R^{\acute{e}t})^{\pi_1} = R.$$

Proposition $\exists C \in GL_h(R^{\acute{e}t})$ s.t. $C^{\sigma}H = C$.

idea of proof: The system of equations

$$C_0^{(p)} H - C_0 = 0, \quad \delta \cdot \det C_0 - 1 = 0,$$

 $C_{i+1}^{(p)} H - C_{i+1} + p^{-1} [C_i^{\sigma} - C_i^{(p)}] H = 0 \ (i \ge 0)$

can inductively be solved with $h \times h$ -matrices C_i over $R^{\acute{e}t}$. Then $C := \sum_i p^i C_i$ is a solution.

 $R \hookrightarrow R^{\acute{e}t}$ induces $H^m(X \otimes R, \mathcal{WO}_{X \otimes R}) \hookrightarrow H^m(X \otimes R^{\acute{e}t}, \mathcal{WO}_{X \otimes R^{\acute{e}t}})$. Define

$$\xi_1,\ldots,\xi_h\in\mathrm{H}^m(X\otimes R^{\acute{e}t},\mathcal{WO}_{X\otimes R^{\acute{e}t}})$$

by

$$\underline{\xi} = \lambda(C)\,\underline{\hat{\omega}}.$$

Then

$$F\underline{\xi} = \underline{\xi}, \quad \pi\underline{\xi} = C\underline{\omega}.$$

Proposition

 $\operatorname{H}^m(X \otimes R^{\acute{e}t}, \mathcal{WO}_{X \otimes R^{\acute{e}t}})$ is a free $\mathcal{W}(R^{\acute{e}t})$ -module with bases $\{\xi_1, \ldots, \xi_h\}$ and $\{\hat{\omega}_1, \ldots, \hat{\omega}_h\}$

 $\mathrm{H}^m(X\otimes R,\mathcal{WO}_{X\otimes R})$ is a free $\mathcal{W}(R)$ -module with basis $\{\hat{\omega}_1,\ldots,\hat{\omega}_h\}$.

 $\pi: \mathrm{H}^m(X \otimes R^{\acute{e}t}, \mathcal{WO}_{X \otimes R^{\acute{e}t}}) \to \mathrm{H}^m(X \otimes R^{\acute{e}t}, \mathcal{O}_{X \otimes R^{\acute{e}t}}))$ restricts to an isomorphism $\pi: \Lambda \simeq \pi \Lambda$ on

$$\Lambda := \ker(F - 1 \text{ on } H^m(X \otimes R^{\acute{e}t}, \mathcal{WO}_{X \otimes R^{\acute{e}t}})).$$

Write Λ resp. ξ instead of $\pi\Lambda$ resp. $\pi\xi$.

Theorem. A is a free Z_p -module with basis $\{\xi_1, \ldots, \xi_h\}$.

$$\mathrm{H}^m(X,\mathcal{O}_X)\otimes_A R^{\acute{e}t}=\Lambda\otimes_{\mathbf{Z}_p} R^{\acute{e}t}$$

$$\xi = C\underline{\omega}, \quad \nabla \xi = 0$$

Thus the rows of C satisfy the same differential equations as $\{\check{\omega}_1,\ldots,\check{\omega}_h\}$.

 $\pi_1 := \pi_1(\operatorname{Spec}(R/pR), \Omega)$ acts on $R^{\acute{e}t}$. By functoriality this induces an action of π_1 on $\operatorname{H}^m(X, \mathcal{O}_X) \otimes_A R^{\acute{e}t}$ and on $\operatorname{H}^m(X \otimes R^{\acute{e}t}, \mathcal{WO}_{X \otimes R^{\acute{e}t}})$. Since F and π are π_1 equivariant we obtain the p-adic monodromy representation:

$$\mathcal{M}: \pi_1(\operatorname{Spec}(R/pR), \Omega) \to \operatorname{Aut}_{\mathbf{Z}_p}(\Lambda)$$
$$\mathcal{M}(\tau)\underline{\xi} = C^{\tau} C^{-1} \underline{\xi} \quad \text{for} \quad \tau \in \pi_1.$$

 $\underline{\xi} = \text{column vector } (\xi_1, \dots, \xi_h)^t$

The *p*-adic monodromy group $\mathcal{M}(\pi_1)$ for the hypergeometric curve $y^5 = x (x-1)^2 (x-\lambda)^3$.

is computed in J. Stienstra, M. van der Put, B. van der Marel, On p-adic monodromy. It turns out to be conjugate to:

case $p \equiv \pm 1 \mod 5$

$$\left\{ \left(\begin{array}{ccc} \eta a & & & 0 \\ & \eta^2 b & & \\ & & \eta^{-2} b & \\ 0 & & & \eta^{-1} a \end{array} \right) \middle| \begin{array}{c} a,b \in \mathbf{Z}_p^*, \\ \eta \in \mu_5 \end{array} \right\}.$$

case $p \equiv \pm 2 \mod 5$

$$\left\{ \left(egin{array}{ccc} \eta a & & & 0 \ & \eta^2 a^\sigma & & \ & & \eta^{-2} a^\sigma & \ 0 & & & \eta^{-1} a \end{array}
ight) \left| egin{array}{c} a \in \mathcal{W}(I\!\!F_{p^2})^* \, , \ \eta \in \mu_5 \end{array}
ight.
ight.$$