goooboooogn
O 7737% 1991 0 78-86

MONODROMY OF p-ADIC SOLUTIONS OF
PI1CARD-FUCHS EQUATIONS *

by JAN STIENSTRA

Picard-Fuchs equations are differential equations coming from (alge-
braic) geometry. Classically their solutions can be written as period in-
tegrals for families of varieties. In this note we want to look at p-adic
solutions of the same differential equations. In p-adic analysis we can not
use period integrals to describe these solutions.

Katz-Oda construction of the Gauss-Manin connection
First recall the purely algebraic construction of the differential equa-
tions due to Katz and Oda. Let S = SpecA an affine scheme which is
smooth over an open part of SpecZ. Let f : X — S be a projective smooth
morphism. The Koszul filtration on the absolute De Rham complex Q%
is defined by
K* := image(f*Q% ® Q%" — Q%).

Then KO'/KI’ ~ Q}/S, Kl’/K2' ~ f*Qg ® Qj{/g
The Gauss-Manin connection

V: H™(X,Q%/s) — O ® H™(X,Q/s)

is the boundary map in the hypercohomology sequence associated with
the exact sequence of complexes

0— K'"/K?» — K"/K* — K"*/K'* -0

*details for this note are presented in
J. Stienstra, The generalized De Rham-Witt complez and congruence differential equatmns in: Arithmetic
Algebraic Geometry; Progress in Math. 89; Birkhauser 1991
J. Stienstra, M. van der Put, B. van der Marel, On p-adic monodromy, to appear in Math. Zeitschrift
1991
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From this we see in particular
image(IH™(X, Q%) — H™(X,Q%/5)) C kerV

Let Diffs denote the algebra of differential operators on A relative to Z
and let Diff be the subalgebra generated by the derivations of A. Then
the Gauss-Manin connection defines a Lie algebra homomorphism

V : DerA — End; (H*(X, Q%/s))

V(D) = (D®1)oV

which extends to an algebra homomorphism

V : Diffg — End, (H*(X, Q%/s))

In other words: the Gauss-Manin connection makes Endz (IH*(X, Q%/s))
a module over Diffs. Linear relations in this module are Picard-Fuchs
differential equations.

For our treatment of p-adic solutions of we use the generalized De
Rham-Witt complex WQ5%. This complex can be constructed for ev-
ery scheme X on which 2 is invertible. It is a Zariski sheaf of anti-
commutative differential graded algebras with the following structures
and properties:

e all degrees > 0.
WQS = WQyx is the sheaf of generalized Witt vectors on X

e For all NV > 1 there is a graded algebra endomorphism Fy on W%
(F for Frobenius). These satisfy

FyFy = Fyy VYN,M
dFy = NFyd VN

where d = differential of WQ%
o Let Q% := @i»o U/ (i!-torsion in Q%) where Q% is the De Rham

complex on X rel. Z. Then there exists a homomorphism of sheaves
of differential graded algebras ‘

T WY — Q%;
such that 7 : WOx — Oy gives the first Witt vector coordinate.
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Because of d Fy = N Fyd we have a homomorphism of differential
graded algebras

Fy : @WQk[—i] - WQ%/N

equal to Fyy in each degree. This fits into the following commutative
diagrams

@ H™i(X, WQ) B H™X,WQ%/N)

l lm
L H™X,Q%/N)
! /10

H™(X,Q%,s/N) > Qe H™(X,Q%//N)

H™(X,WO0x) B  H™X,Wa%/N)

Fy | !
H™(X,WOx) H™(X,Q%)/N
Tl !
H™(X, Ox) 1
! !
H™(X,0x)/N « H™(X, Q}/S)/N
1V

Q.IS’ ® Hm(Xa QB(/S/N)

Assume:

S = SpecA smooth over open part of SpecZ[}]
f: X — S projective smooth morphism, relative dimension r
all H/(X, Y /5) are free A-modules, H"(X, Q%/s) ~ A.

Then 7 : H"(X, WOx) — H™(X, Ox) is surjective. Choose:
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{wi,...,ws} basis of H™(X, Ox)
{@1,...,@n} dual basis of H™™™(X, Q% )
Wiy...,Wp € Hm(X, kﬁ@x) s.t. TW; = w;

Define for N € IN the h X h-matrix By over A by

TFyw=Byw

where w = column vector with components wy,...,wy; similarly for @.
B, mod p for prime p is known as the Hasse- Witt matriz of ...

Theorem. Suppose Pi,..., P, € Diffy are such that
V(P)or+-+V(R)or=0  in H"™X,0%/s)
Then one has the following congruence differential equation
P Byi+:---+P,Byi,=0mod N

foral Ne IN,fort=1,...,h.
Idea of proof: for every derivation D on A

(TN Wi , ‘:)j) = By modN
V(D)(TN (;),) =0
D, &) = (w s, V(D))

Hypergeometric curves
Let 0 < a,b,c < n be integers with gcd(n,a,b,c) = 1. Let X =
Xn:ab, be the smooth projective model, over A := Z[p,][A, (mA(1-X))71],
of
y® = z2(z — 1)P(x — N)°.

The cohomology H'(X, Ox) can be calculated as Cech cohomology with
respect to covering of X X; = {z # oo}, Xy = {z # 0}. For a detailed
description we need:

a=a/n, B=b/n, y=c/n,
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() = [~ <la> - <IB> - <ly>€{0,1,2,3}
J={(1,j)€@/mz)x2|0<j< ()}

[] and <-> are the usual integral and fractional part functions.

For (1,j) € J define

w = y ol (z - 1)=08 (g — )~
wqj) = coho class of Cech 1-cocycle z 79 v
O = n~ !z tyrlde
— n—lmj—1-<la>(m _ 1)—<lﬂ>(m _ )‘)—<l7> dz

with € IV, I =l mod n. Then

A{wuntuges = basis of HY(X, Ox)
{Ou}ajes = dual basis for H(X, Q/s)

Lift wq j) to wg ;) in HY(X,WOx) as follows. 7 v; is section of WOx
over X; N X,. The Cech cocycle condition is trivially satisfied! Take

w(,j) = cohomology class of the Cech 1-cocycle z77 v,
Then
m Fy & j) = cohomology class of the Cech 1-cocycle (z77 v)V

Recall the definition 7 Fy&@ = Byw. Thus, indexing the rows and
columns of By with elements of J, one finds

By, =0
if I' #£1N, whereas for I' = IN

_ [N <18>]) [ IN <ly>]
B 1), = ,(—I)Lik: ( L-k ) ( k ) d

here L =j — jN + [N <la>]+ [N <IB3>]+ [N <ly>].
Then one easily checks the following congruence differential equation

V(I)(p,j/)) BN,(I,j),(l’,j’) =0mod NA
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where Py jn is the hypergeometric differential operator, with © = )\d#‘f\,

O(0—j'+ <l'a>+ <l'y>)—
A0+ <I'y>)(O0—j'+ <lla>+ <I'f> + <l'y>))

We now turn to p-adic solutions, p prime > 2. Our method is based
on the commutativity of the diagram

Fy

H™(X,WOx) - H™(X,WOx)

l !

| Fyus | | Fy

| ]

H™(X, WQx/p™t) — H™(X,WQ%/p")
! !
H™(X,Q%)/p™! — H™X,Q%)/p"
! !
H™(X,Q%5)/p"™! = H™(X,Q%5)/p"
(AY |V

0 @ H™(X,Q%/s/p™") — Q5@ H™(X,Q%/5/p")
In the limit for r — oo it gives

li H™(X, WOx) — (H™(X, Q/5) ® Zp)"

and thus we try to find p-adic solutions of Picard-Fuchs equations by
”lifting against Frobenius”. This amounts to solving algebraic equations!

Vectors fixed by Frobenius
Assume det B, ¢ pA. Let

A% = A[(det B,)™Y], Ag=A°/pA°, AN =1im A%/p"A".

Ay is a direct product of domains. Fix one such component and let R be
its inverse image in A”". Then R is complete and separated in the p-adic
topology and det B, is invertible in R.

Let P be the set of primes # p. For every scheme Y such that every
| € P is invertible in O} one can use the idempotent operator E, :=
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Miep(1 — I71V,F}) on WOy to split off the sheaf of p-typical Witt vectors
onY.
WOy = E;WOy

There exists a Z,-algebra endomorphism o of R such that
o(z) =2’ modpR Vz €R

There are many such o. Given a choice for o there is a unique homomor-
phism of rings

A:R— W(R)
such that m F} A = o™ Vn € IN; here W(R) is the ring of p-typical Witt
vectors over R and 7 : W(R) — R is the projection onto first coordinate

Notations:
o(z) = 2°, F = Fy

for a matrix M = (m;;)

M) = (mf), M7 =(mf), MM)=(A(my)), M= (my);

for A-algebra A’ X ® A = X xg SpecA’.

Theorem

3H € GLu(R) s.t. By+1 = B Hmod p™!  Vr > 0.

301, ..., 0n € H'(X ® R, WOxer) s.t. F&o = A(H)& and 7; = wy,
@ = column vector (&y,...,&)

Fix an algebraically closed field @ > R/pR and define

(R/pR)* := lim B.
BeB
where B is the set of finite étale extensions of R/pR in . For every
B € B there is a unique finite étale B over R such that B = B/pB. We
define ,
R := the p-adic completion of lim B.
BeB
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(R/pR)% is an infinite étale extension of R/pR and R*/pR¢ = (R/pR)%.
The algebraic fundamental group m (Spec(R/pR),?) is by definition the
Galois group of (R/pR)*/(R/pR). It acts on R¥. ¢ induces an endo-
morphism o of R%.

(RYY =1,, (R =R

Proposition 3C € GLi(R®) st. C°H =C.
idea of proof: The system of equations

CPH_Cy=0, 6-detCy—1=0,
CR H - Cina +p7'[C7 - CPIH=0(i 2 0)

can inductively be solved with h x h-matrices C; oVer Ré. Then C :=
¥ p* C; is a solution.

R — Rét induces Hm(X ® R, WOX@R) — Hm(X ® Rét,WOX®Rét).
Define ‘
fl, .. -,fh € Hm(X & Ret, WOX®Rét)

by
£=C)w.
Then
F{=¢§ nf=Cuw.
Proposition

H™(X ® RE, WOxgg«) is a free W(R)-module with bases {&1,...,&1}
and {&,...,0n}
H™(X ® R,WOxgr) is a free W(R)-module with basis {&1,...,@n}.

7 : HMX @ R WOxgre) = H™(X ® R®,Oxgre)) restricts to an iso-
morphism 7 : A ~ 7A on

A:=ker(F -1 on H™(X @ R®, WOxgge«))-
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Write A resp. £ instead of wA resp. w€.

Theorem. A is a free Z,-module with basis {{;,...,&}.
H™(X,0x) ®4 R* = A @, R*

{=Cw, VE=0
Thus the rows of C' satisfy the same differential equations as
{@1,..., a8}

m = m1(Spec(R/pR),Q) acts on R¥. By functoriality this induces
an action of m on H™(X,0x) ®4 R® and on H™(X ® R¥ WOxgpre«)-
Since F and 7 are m; equivariant we obtain the p-adic monodromy
representation:

M : 7 (Spec(R/pR), Q) — Autgz,(A)
M(T)E=C"C7E¢ for TEm.

§ = column vector (&i,...,&,)

The p-adic monodromy group M(m;) for the hypergeometric curve

Y =z (z-1)*(z - 2>
is computed in J. Stienstra, M. van der Put, B. van der Marel, On p-adic

monodromy. It turns out to be conjugate to:
 case p = £1lmod>b

na 0
n%b a,b€z;,

7~2b n € ps

0 nla
case p = £2mod5
na 0
n%a’ a € W(FFy)*,

n*a’ N € ps

0 nla




