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CHOW POLYTOPES

A.V. Zelevinsky
Department of Mathematics, Northeastern University

Boston, MA 02115, U.S.A.

The main results presented in this talk were obtained in ajoint work with M.M. Kapra-
nov and B. Sturmfels (Chow polytopes and general resultants, Technical report 91-2, MSI,
Cornell University, January 1991). Let $X$ be a projective variety of dimension $k-1$ embed-
ded into the projective space $P^{n-1}$ with a distinguished coordinate frame. We associate
to $X$ a rational convex polytope $Ch(X)\subset R^{n}$ which we call the Chow polytope of $X$ and
denote $Ch(X)$ . The Chow polytope $Ch(X)$ is a common generalization of the Newton
polytope of a hypersurface, and of the matroid polytope of a flat in the projective space.
It carries important information on asymptotic behavior of $X$ under the action of the
complex torus $(C^{*})^{n}$ . Before giving a general definition consider two important special
cases.

Example 1. Let $X$ be a hypersurface $\{f=0\}$ defined by an irreducible homogeneous
polynomial $f(x_{1}, \ldots, x_{n})$ . Then $Ch(X)$ is the Newton polytope of $X$ , i.e., the convex hull
in $R^{n}$ of all lattice points $\alpha=(\alpha_{1}, \ldots, \alpha_{n})\in Z_{+}^{n}$ such that the monomial $x^{\alpha}=x_{1}^{\alpha_{1}}\cdots x_{n}^{\alpha_{\mathfrak{n}}}$

occurs in $f$ with a non-zero coefficient.

Example 2. Let $X$ be a $(k-1)$-dimensional flat (that is, a subvariety of degree $d=1$ )
in $P^{n-1}$ . Then $Ch(X)$ is the matroid polytope of $X$ . Let $e_{1},$ $\ldots,$

$e_{n}$ be the standard
basis in $R^{n}$ or $C^{n}$ . By definition, the matroid polytope is the convex hull in $R^{n}$ of the
points $e_{i_{1}}+\ldots+e_{i_{k}}$ such that the orthogonal projection of $X$ to the coordinate flat
spanned by $e_{i_{1}},$ $\ldots,$ $e_{i_{k}}$ is an isomorphism. This defines the matroid stratification of the
Grassmann variety $Gr_{k}(C^{n})$ : two $(k-1)$ -flats in $P^{n-1}$ (or equivalently $k$ -dimensional
subspaces of $C^{n}$ ) belong to the same stratum if they have the same matroid polytope. This
stratffication plays a fundamental role in the theory of general hypergeometric functions
on Grassmannians by I.M. Gelfand and coworkers.

The notion of the Chow polytope will allow us to generalize the matroid stratification
to the Chow variety which parametrizes all subvarieties in $P^{n-1}$ of dimension $k-1$ and
degree $d$ . To be more precise, the Chow variety $G(k, d, n)$ consists of all algebraic cycles in
$P^{n-1}$ of dimension $k-1$ and degree $d$ (such a cycle is a formal sum $X= \sum m_{i}X_{i}$ , where
each $X_{i}$ is a closed irreducible subvariety in $P^{n-1}$ of dimension $k-1$ , and $deg(X)$ $:=$

$\sum m_{i}deg(X_{i})=d)$ . In particular, $G(k, 1, n)=Gr_{k}(C^{n})$ , and $G(n-1, d, n)$ is identified
with the projectivization of the space of homogeneous polynomials of degree $d$ on $C^{n}$ (a
cycle of codimension 1 is defined by a homogeneous polynomial on $C^{n}$ ).

The notion of the Chow variety is classical and plays a fundamental role in algebraic
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geometry (see e.g. W.L. Chow and B.L. van der Waerden, Zur algebraischen Geometrie IX.
Zugeordnete Formen und algebraische Systeme von algebraischen Variet\"aten, Math. Ann.
113 (1937) 692-704; [Reprinted in: B.L. van der Waerden. Zur algebraischen Geometrie
(Selected papers), Springer, 1983]). There are several ways of embedding $G(k, d, n)$ as a
subvariety into a projective space. Let $\mathcal{B}=\oplus_{d}\mathcal{B}_{d}$ be the coordinate ring of the Grassman-
nian $Gr_{n-k}(C^{n})$ . We will construct an embedding $G(k, d, n)arrow P(\mathcal{B}_{d})$ . First suppose that
$X\in G(k, d, n)$ is an irreducible subvariety of dimension $k-1$ and degree $d$ . We define

$Z(X)=\{L\in Gr_{n-k}(C^{n}) : L\cap X\neq\emptyset\}$ .

It is known that $Z(X)$ is an irreducible hypersurface in $Gr_{n-k}(C^{n})$ of the same degree $d$ .
Therefore, $Z(X)$ is defined by a function from $\mathcal{B}_{d}$ , which will be denoted $\mathcal{R}_{X}$ and called
the Chow $form$ of $X$ . For a cycle $X= \sum m_{i}X_{i}\in G(k, d, n)$ we define the Chow form
$\mathcal{R}_{X}\in \mathcal{B}_{d}$ to be $\mathcal{R}_{X}=\prod \mathcal{R}_{X}^{m:}$ . The Chow form is defined up to a scalar multiple, so we
obtain a well-defined mapping $G(k, d, n)arrow P(\mathcal{B}_{d})$ . This is a classical result going back
to Chow and Van der Waerden (loc.cit) that the mapping $X-\rangle$ $\mathcal{R}_{X}$ is an embedding of
$G(k, d, n)$ into $P(\mathcal{B}_{d})$ as a closed algebraic subvariety.

The construction of the Chow variety $G(k, d, n)$ is natuml in the sense that the action
of the group $GL_{n}(C)$ by projective transformations on $P^{n-1}$ extends to an action on
$G(k, d, n)$ . Since we have a distinguished coordinate frame in $P^{n-1}$ , we will be particularly
interested in the action on $G(k, d, n)$ of the maximal torus $H=(C^{*})^{n}\subset GL_{n}(C)$ of
diagonal matrices. We identify the character lattice of $H$ with $Z^{n}$ as in Example 1 above;
we will refer to characters of $H$ as H-weights.

Main deflnition. The Chow polytope $Ch(X)$ of an algebraic cycle $X\in G(k, d, n)$ is the
convex hull of all $H$ -weights occurring in the weight decomposition of the Chow form $\mathcal{R}_{X}$ .

The $H$ -weights appearing in this definition can be computed as follows. We express
the Chow form $\mathcal{R}_{X}$ (not uniquely) as a polynomial in dual Plucker coordinates $[i_{1}\ldots i_{k}]$

on the Grassmannian $Gr_{n-k}(C^{n})$ (e.g., if $X$ is a $(k-1)$ -flat with ordinary Pl\"ucker coor-
dinates $\xi_{i_{1}\ldots i_{k}}$ then $\mathcal{R}_{X}=\sum_{i_{1},\ldots,i_{k}}\xi_{i_{1}\ldots i_{k}}[i_{1}\ldots i_{k}]$ ). We abbreviate $[\sigma]=[i_{1}\ldots i_{k}]$ for a
$k$ -element subset $\sigma=\{i_{1}<\ldots<i_{k}\}\subset\{1, \ldots, n\}$ . Then the weight of a bracket mono-
mial $\prod_{\sigma}[\sigma]^{m_{\sigma}}$ is equal to $\sum_{\sigma}m_{\sigma}\sum_{i\in\sigma}e:$ . It follows that $Ch(X)$ for $X\in G(k, d, n)$ is a
lattice subpolytope of the scaled hypersimplex $d\triangle(k, n)$ , where $\Delta(k, n)$ $:=\{(x_{1}, \ldots, x_{n})\in$

$R^{n}$ : $0\leq x_{i}\leq 1,$ $\sum_{i}x_{i}=k$ }. Note also that

$Ch( \sum m_{i}X_{1})=\sum m_{i}Ch(X_{i})$ ,

the Minkowski sum of polytopes.
To characterize $Ch(X)$ in algebraic-geometric terms consider the orbit closure $\overline{HX}\subset$

$G(k, d, n)\subset P(\mathcal{B}_{d})$ . This is a projective toric variety. Toric varieties can be described by
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means of their polyhedral fans (see e.g. T. Oda, Convex Bodies and Algebraic Geometry,
Ergebnisse Math., 3. Folge, 15, Springer, 1988). It turns out that the fan corresponding to
$\overline{HX}$ is the normal fan of $Ch(X)$ . Thus combinatorial properties of $Ch(X)$ reflect properties
of the toric variety $\overline{HX}$. In particular, we have

Proposition 3. The face poset of $Ch(X)$ is isomorphi$c$ to the $pos$et of H-orbits in the
toric variety $\overline{HX}$, ordere$d$ by indusion of their closures.

A canonical system of representatives for the H-orbits on $\overline{HX}$ is formed by toric
degenerations of $X$ in $G(k, d, n)$ . Here a cycle $Y$ is a toric degeneration of $X$ if $Y=$

$\lim_{tarrow\infty}\lambda(t)X$ for some l-parameter subgroup $\lambda$ : $C^{*}arrow H$ . In particular, we see that
vertices of $Ch(X)$ are in one-to-one correspondence with extreme toric degenerations of
$X$ , i.e., those which are $H$ -invariant. This leads to the following explicit description of
vertices of $Ch(X)$ and the corresponding terms in the Chow form $\mathcal{R}_{X}$ . For any subset
$\sigma\subset\{1,2, \ldots, n\}$ let $L_{\sigma}$ denote the coordinate flat in $P^{n-1}$ spanned by $\{e_{i} : i\in\sigma\}$ (so
$dim(L_{\sigma})=Card(\sigma)-1)$ .

Theorem 4. For any cyde $X\in G(k, d, n)$ the vertices of the Chow polytope $Ch(X)$ are
in one-to-one correspondence with toric degenerations $ofX$ of the form $\sum_{Card(\sigma)=k}m_{\sigma}L_{\sigma}$ .
The vertex of $Ch(X)$ corresponding to such a cyde $equ$als

$\omega$ $=$
$\sum_{\sigma}m_{\sigma}\sum_{i\in\sigma}e_{i}$

$\in$ $d\triangle(k,n)$ .

The corresponding weight component of the Chow form $R_{X}$ is the bracket monomi$aI$

$R_{X,\omega}$ $=$ const . $\prod$ $[\sigma]^{m_{\sigma}}$ .
Card$(\sigma)=k$

For any subvariety $X\in P^{n-1}$ we abbreviate $H_{X}=\{t\in H : tX=X\}$ .

Proposition 5. For an irreducible $sub$variety $X\in G(k, d, n)$ we $\Lambda$ave

$dimCh(X)$ $=$ $dimH-dimH_{X}$ .

This proposition allows us to characterize possible edges of Chow polytopes. We say
that a non-zero vector $a=(a_{1}, \ldots, a_{n})\in Z^{n}$ is admissible if $g.c.d.(a_{1}, \ldots, a_{n})=1$ and
$a_{1}+a_{2}+\ldots+a_{n}=0$ . For such a vector put $\sigma_{+}(a)=\{i : a_{i}>0\}$ and $\sigma_{-}(a)=\{i$ :
$a_{i}<0\}$ . We say that $a$ has dimension $dim(a)$ $:=Card(\sigma+(a))+Card(\sigma_{-}(a))-2$ and
degree $deg(a)$ $:= \sum_{i\in\sigma_{+}(a)}a_{i}(=-\sum_{i\in\sigma_{-}(a)}a_{i})$.

Let $A(k, d, n)$ denote the set of all admissible $a\in Z^{n}$ with $dim(a)\leq k-1$ and
$deg(a)\leq d$ .
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Proposition 6. Let $X$ be any cyde in $G(k, d, n)$ . Then each edge of its Chow polytope
$Ch(X)$ is $paral!el$ to some $a\in A(k,d,n)$ .

Note that in the case $d=1$ Proposition 6 says that the matroid polytope $Ch(X)$ of a
flat $X\in G(k, C^{n})$ is a subpolytope of the hypersimplex $\triangle(k, n)$ whose edges are parallel
to vectors of the form $e_{i}-e_{j}$ . This property of matroid polytopes is equivalent to the
definition of a matroid (cf. A. Bj\"orner, M. Las Vergnas, B. Sturmfels, N. White, G. Ziegler,
Oriented Matroids, Cambridge University Press, 1991). Having this example in mind, it is
natural to call a hypermatroid polytope of $mnkk$ and degree $d$ any lattice subpolytope of
the scaled hypersimplex $d\Delta(k, n)$ whose edges are parallel to the vectors from $A(k, d, n)$ .
Then every Chow polytope $Ch(X)$ for $X\in G(k, d, n)$ is a hypermatroid polytope of
rank $k$ and degree $d$. Of course, as for ordinary matroids, the $re$alizability problem of
discriminating Chow polytopes among hypermatroid polytopes is very difficult.

Chow polytopes of toric varieties. Suppose that an algebraic torus $H_{0}=(C^{*})^{k}$ is
embedded into $H=(C^{*})^{n}$ with the help of the set of $H_{0}$ -weights $\mathcal{A}=\{\alpha_{1}, \ldots, \alpha_{n}\}\subset Z^{k}$ ;
as before, we identify the lattice of $H_{0}$ -weights with $Z^{k}$ . Let $X\subset P^{n-1}$ be the closure of
a generic $H_{0}$ -orbit in $P^{n-1}$ ; this is a projective toric variety of dimension $k-1$ . Without
loss of generality we assume that $X$ is the closure of the $H_{0}$ -orbit of the point (1 : 1 :
. . . : 1), the set $\mathcal{A}$ generates the group $Z^{k}$ , and $\mu(\alpha_{1})=\ldots=\mu(\alpha_{n})=1$ for some group
homomorphism $\mu$ : $Z^{k}arrow Z$ . In this situation we write $X=X_{A}$ . We also write $\mathcal{R}_{A}$ instead
of $\mathcal{R}_{X_{A}}$ .

Let $Q$ be the convex hull of $\mathcal{A}$ in $R^{k}$ . We introduce the volume form $Vol$ on $Q$

normalized so that an elementary simplex on the lattice affinely spanned by $\mathcal{A}$ has vol-
ume 1. The degree of $\mathcal{R}_{A}$ , as a bracket polynomial or equivalently the degree of $X_{A}$ is
known to be $Vol(Q)$ . This statement is essentially the theorem of D.N. Bernstein and
A.G. Kouchnirenko on the number of solutions of sparse systems of polynomial equations
(see A.G. Kushnirenko, The Newton polyhedron and the number of solutions of a system
of $k$ equations in $k$ unknowns, Uspekhi Mat. Nauk. 30 (1975) 266-267). In a paper
by I.M. Gelfand, M.M. Kapranov and A.V. Zelevinsky (Discriminants of polynomials in
several variables and triangulations of Newton polytopes, Algebra $i$ analiz 2 (1990) 1-62),
to a subset $\mathcal{A}$ as above the secondary polytope $\Sigma_{A}$ was associated. It is defined as follows.
A triangulation $T$ of $(Q, A)$ is a collection of $k$ -element subsets $\sigma\subset\{1, \ldots, n\}$ such that
the simplices $\Delta_{\sigma}$ $:=Conv\{\alpha_{i} : i\in\sigma\}$ for $\sigma\in T$ form a triangulation of $Q$ . To every
triangulation $T$ we associate a lattice point

$\varphi(T)=\sum_{\sigma\in T}Vol(\Delta_{\sigma})\cdot\sum_{:\in\sigma}e_{i}\in Z^{n}$
.

By definition, $\Sigma_{A}$ is the convex hull in $R^{n}$ of all points $\varphi(T)$ .

4



110

Theorem 7. The Chow polytope $Ch(X_{A})$ coincides with the secondary polytope $\Sigma_{A}$ .
Theorem 7 has the following refinement. We say that a triangulation $T$ of $(Q, \mathcal{A})$ is

regular if it admits a strictly convex $T$-piecewise linear continuous function $g:Qarrow R$.

Theorem 8. The vertices of $Ch(X_{A})$ are exactly th$e$ points $\varphi(T)$ for $alI$ regular trian-
gulations $T$ of $(Q, \mathcal{A})$ . The extreme toric degeneration of $X_{A}$ corresponding to a regular
triangulation $T$ of $(Q, \mathcal{A})$ has the form

$T$ $rightarrow$

$\sum_{\sigma\in T}Vol(\Delta_{\sigma})L_{\sigma}$
.

The corresponding weight component of the Chow form $\mathcal{R}_{A}equ$als

$\mathcal{R}_{A,\varphi(T)}$ $=$
$\pm\prod_{\sigma\in T}[\sigma]^{Vol(\Delta_{\sigma})}$

.

We see that the simplices of a regular triangulation $T$ together with their volumes are
directly read off the Chow form $\mathcal{R}_{A}$ . In a paper by I.M. Gelfand, M.M. Kapranov and
A.V. Zelevinsky quoted above the secondary polytope appeared as the Newton polytope of
a polynomial $E_{A}(x_{1}, \ldots, x_{n})$ called the principal A-determinant. In fact, $E_{A}$ is obtained
from the Chow form $\mathcal{R}_{A}$ by the specialization

$[i_{1}\ldots i_{k}]\mapsto det(\alpha_{i_{1}}, \ldots, \alpha_{i_{k}})\cdot x_{i_{1}}\cdot x;_{2}\cdots x_{i_{k}}$ .

Concluding remarks. a) A point of the Grassmannian $Gr_{n-k}(C^{n})$ can be written in the
form $\{f_{1}(x)=\ldots=f_{k}(x)=0\}$ for a system of linear forms $\{f_{1}, \ldots, f_{k}\}$ on $C^{n}$ of the full
rank $k$ . Therefore, the Chow form $\mathcal{R}_{X}$ of a $(k-1)$ -dimensional subvariety $X\subset P^{n-1}$ can
be written as a polynomial $\tilde{\mathcal{R}}_{X}(f_{1}, \ldots, f_{n})$. We call the polynomial $\tilde{\mathcal{R}}_{X}$ the X-resultant.
Its vanishing means that $f_{1},$

$\ldots,$
$f_{k}$ have a common root on $X$ . In particular, for the

Veronese embedding $X=P^{k-1}arrow P(S^{m}C^{k})$ the $X$ -resultant becomes the classical
resultant of $k$ homogeneous forms of the same degree $m$ in $k$ variables.

b) There is a general formula for the Chow form (or equivalently, for the $X$ -resultant)
expressing it as the determinant of a complex of finite-dimensional vector spaces, called the
Cayley-Koszul complex. Unfortunately, in general this formula presents the polynomial $\mathcal{R}_{X}$

as a ratio of two polynomials of very high degrees. It would be interesting to find simpler
expressions. Such an expression was recently found by I.M. Gelfand, M.M. Kapranov and
A.V. Zelevinsky (Hyperdeterminants, Technical report 91-26, MSI, Cornell University,
June 1991) for the case when $X$ is the product of several projective spaces in the Segre
embedding. The $X$ -resultant in this case is the resultant of a system of multilinear forms,
and it turns out to be the hyperdeterminant of a multidimensional “matrix”. In a work
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in progress with B. Sturmfels we are investigating a class of $X$ -resultants which admit a
simple formula generalizing the classical Sylvester formula for the resultant of two binary
forms.

c) The Chow polytope of $X$ is closely related with the state polytope of $X$ , which
was introduced and studied by D. Bayer, M. Stillman and I. Morrison. In fact, $Ch(X)$ is
obtained from the state polytope by some limit process.

d) In another work in progress with B. Sturmfels we are studying the Chow form and
the Chow polytope of the variety $\nabla_{m,n}$ of all $mxn$ matrices with rank $< \min(m, n)$ .
We have proven in particular that $Ch(\nabla_{m,n})$ coincides with the Newton polytope of the
product of all maximal minors of an $m\cross n$ matrix. The variety $\nabla_{m,n}$ is toric only when
$\min(m, n)=2$ . Our study is the first step towards better understanding of the Chow
forms and Chow polytopes for classes of algebraic varieties which are not toric.

I am grateful to Professors M. Namba and M. Yoshida for the invitation to participate
at the workshop and symposium on “Special differential equations”, to the Taniguchi
Foundation for the support, and to B. Sturmfels for his constructive criticism.
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