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Yamabe Metrics and Conformal Transformations
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The Yamabe theorem, which was proved by R. Schoen (71,
states that for any conformal class on .a compact connected
manifold there-exists a metric of constant scalar curvature as
one which minimizes the Yamabe functional (see §1) defined on
the conformal class. In this paper, we are interested in the
space of solutidné of the Yamabe problem, that is, the space of
minimizers for the Yamabe functional. The conformal transformation
group acts naturally on this space, and a naive question will be
whether this action is transitive (up to homothety) or not. We
shall show new neceséary conditions for a vector field to be
conformal, and give examples which answer negatively to the

guestion at infinitesimal level.

§1. The space of Yamabe metrics.

Let M be a conpact connected n-manifold, and C a conformal
class of Riemannian metrics of M, i.e., C = {ezug; ue&CdkM)E for
any fixed metric g& C. Throughout this paper we assume the

dimension n is at least 3. The Yamabe functional I:C-2R is defined

as

n-2
n

I(g) = SM Rgdvg/(SMdvg) for geC,
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where Rg is the scalar curvature function of a metric g &€C.

We set

S(M,C)

n

{geci 119) = pm,0f,

where

H(M,C)

We call a metric in S(M,C) a solution of the Yamabe problem, or

inf {I((j); g(—iC}.

simply a Yamabe metric. Since a Yamabe metric is a minimizer

of I:C->1R, variational formulas show the following properties

for g€ s(M,C):
(1.1) Rg = const..
(1.2) Ap(=Dg) 2 R/ (n-1),

where A1(*[§g) is the first nonzero (positive) eigenvalue of the

Laplacian. Moreover it is also known that for g €s(M,C),
(1.3) K, C) = RgVol(M,g)Z/n < n(n-1)vol(sh(1)?/?,

where Sn(1) is the Euclidean n-sphere of radius 1 (cf. [1]).
Since S(M,C) is closed under multiplications'by positive

constants, it is convenient to consider
s,(M,C) = fges(m,C); Vol(M,g) = 1§

instead of S(M,C). S1(M,C) is not empty because of the Yamabe

theoremn.
Let Conf(M,C) denote the conformal transformation group of
(M,C). It is obvious that Y,g c—‘_S.l(M,C) if PeConf(M,C) and ge&

S1(M,C). This way, Conf(M,C) acts on 81(M,C). The stabilizer



of this action at gEES1(M,C) is Isom(M,g), the isometry group

of (M,g). Hence we have for each ge&S1(M,C) a inclusion map
ig: Conf (M,C)/Isom(M,g) —> 5, (M,C).

This trivial observation gives us examples of (M,C) for which

a solution of the Yamabe problem is not unique.

Proposition 1.1 ([6]). Let (Mi’gi)' i=1,2, be compact

connected Riemannian manifolds with constant scalar curvatures.

Assume that dim M1 > 1, R1 >. 0, R2 > 0 and that Isom(Mi,gi) acts

transitively on M, for i=1,2. Let C. be the conformal class

on M = M1X M2 that contains the metirc rng-rgz. Then for

sufficiently large r, Conf(M,Cr) is strictly larger than

Isom(M,qg), where g 681 (M’Cr) .

Proof. Suppose contrarily that Conf(M,Cr) = Isom(M,qg).

Then
Isom(M,qg) = Conf(M,Cr);D Isom(M,r2g1-+g2)
D Isom(M,,g,;) % Ison(M,,g,).

Therefore g is Isom(Mi,gi)—invariant, i=1,2. ‘This, together with
the transitiveness of Isom(Mi,gi)—actions, implies that g is
homothetic to r2g1-+g2. Hence the metric rzg1+g2 must be a
Yamabe metric. On the other hand, it is easy to see that the
metric rzg1-+g2 violates the conditions (1.2) and/or (1.3) for
sufficiently large r, though its scalar curvature is constant.

Contradiction.

Remark. This result is an extension of [2]. See also [4].
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We formulate our question as follows:
Q.1. 1Is ig bijective?

Since a Yamabe metric has constant scalar curvature, we may ask

more generally

Q.2. For 9qr 92<§C such that R_ = R_ = const and Vol(M,g.) =
9, 92 1
Vol(M,gz), is there a conformal transformation Y eConf(M,C)
*q. =q._7?
such that ¢ 91 =957
For each ge€C, we have a bijection

(M) —> C; utd>e’lg ,

and we can regard S1(M,C) as a subset of CN(M):

ne

s,(,¢) T fuecTm); R 20" K, ey, vol(M,e?%g) = 1].

e
Differentiating the equations, we formally compute the tangent

space, denoted by s,(M,C)_ , to S,(M,C) at g&€S,(M,C) as
1 g 1 1
n-1

~ o . _ ___’]___- _ ’
%(mcky={geC(M),—Agu— R§MSMUd%y_O}'

As we shall see later, this formal tangent space can differ from
actual tangent space. Let conf(M,C}) and isom(M,g) denote the
Lie algebras of Conf(M,C) and Isom(M,g) respectively. We have

the following identification:
conf: (M,C)/isom(M,g) = i-%divgx; X econf(M,C)} C c™(m).

With these identifications we can see that the differential

(ig)* of ig is the inclusion map:

(i )4t conf(M,C)/isom(M,qg) C 51(M,C)g
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where g(ES1(M,C). This inclusion is also a consequence of a
well-known formula —Lﬁgdivgx = (Rg/(n—‘lndivgx for a conformal
vector field X and g €C with constant scalar curvature.

In this setting, the following'correspond to Q.1 and Q.2

respectively. .
Q.1'. 1Is (ig)* bijective for g€s,(M,C)?

Q.2'. If g has constant scalar curvature and u €C™(M) satisfies

-43g11= R u ,

1
n-1"g

then is there a conformal vector field whose divergence

is equal to u?

In §3 we shall answer these two questions negatively.

§2. Conformal vector fields and higher order variations

of the Yamabe functional.

Theorem 2.1. Let (M,g) be a compact Riemannian manifold

of dimension n > 3 with constant scalar curvature Rg. Let X

be a conformal vector field and u = divg)(. Then,

1
n-1

n+2 2
Rg)v-'_(n—1)(n—2)Rgu

. 3
(1) §,u dvg = 0 and (A +

is solvable for v;

“ 2 _n-6 4 ] ; . .
(i) 3 SMxxxzdvg ) SMLI dvg » where v is as in (i).

Proof. First we note that.all are trivial when R_ < O,

because ding = 0 1if Rg < 0. Secondly, if some solution v of

the equation in (i) satisfies the equality in (ii), then any
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other solution, say v', satisfies the equality, because then

2 , _ (n=1)(n-2) ( 1 :
SMu (vi- v )dvg"_ (n+2)Rg M((Ag T n-1g g

(n-1) (n-2) 1 o
-~ R, ' V(A + FoR IV - vhIav,

= 0.

Let {Yt} be 1-parameter transformation group generated by X.

Since X is conformal vector field, 9pi= ?%g is conformal to g.

Define th CM(M) as

(2.1) g (n-—2)/4g

= W >
“t

t ’ wt 0.

Then u = divgx = (2n/(n—2))§1O , where ° stands for d/dt. The

scalar curvature R, of It is written as

t
_ -9
(2.2) Rt = W ngt'
where g = (n+2)/(n-2) and Lg = ~-4((n-1 )/(rx--2))Ag + ’Rg . Hence
we have
(2.3) R, = w "q~1(w L - g(L w )w
- t t tTyg g t’”"t"

Differentiating this repeatedly, we get

g+1 2 (m-1) _ ) (m)
(2.4) (wt Rt) = (thg - q(ngtnwt

m-1

m-1 . {m-k) . (k)
+Zl‘{(n1 k) _(k)qwt ngt '
Since Rg is constant, Rt = ?ERg is constant independent of t.
Thus the left side of (2.4) is identically equal to 0. So we
expand (2.4) explicitly at t=0 for m=1,2 and 3 respectively as
follows:
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(2.5) P g =0,
(2.6) P W = q(g-1)R_w.2
- g 0" q q g 0 7
oo Y e 3
(2.7) ng%)= q(q—-?)Rg(Bwow0 + (q—2)w0 )
where Pg = Lg - ng = —4«rb4)ﬂn—2nﬂﬂg + Rgﬂn-1n. Thus we have
. 3 _t . [
(2.8) q(q—1)RgSMx”) dvg-jtdwOPgwodv
fM OP w dv =0,
and
s e 03
(2.9) Q(Q*1)Rg$M(3w0wo + (g-2)5) dv,

= 5MwOPngdv =5MwOPgwO g = 0.
Recall that u = (2nﬂn—2»&b , and we can see that our assertions

follow from (2.6), (2.8) and (2.9) by putting v = (ZnAn—anwo .

The abd?e result is related to higher order variational
formulas for the Yamabe functional. If the Yamabe functional
I:C2Rhas a relative minimum at g, then 1st and 2nd variational
formulas say that the metric g has the properties (1.1) and (1.2).

As for 3rd and 4th variational formulas we have the following.

Theorem 2.2. Suppose g has positive constant scalar curvature

and that the Yamabe functional I:C~—> R has a relative minimum at

g. Then,
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. . 1 2 ) |
(1) If u,, uZE:Ker([Sg + n—1Rg)’ then SMu1 uzdvg = 0. In
: -
particular, for any ue:Ker(Ag + n—1Rg)’
(A_ + 1 = D+ 2 R _u?

T (n-1)(n-2) g

is solvable for v;

(ii) For u, v as above, the inequality

BSM-uZV vy 2'353551

holds.

Proof. Let u be an arbitrary function satisfying

(2.10) (A 1 R Ju = 0.
We set
(2.11) gp = (1 + tu + %tzv)’“(“‘z’g ,

where v is any function such that

2
(2.12) SMV dvg = —qSM u dvg '
where g = (n+2)/(n-2). Then it is straightforward to see
d d 2
=Vol(M,qg )l = (=) Vol(M,g ),
dt koo at ' es0
= R dv = ) R, dv = 0,
Sl R tl o G’ Jume tly 2o

where Rt and dvt are respectively the scalar curvature and the
volume element of the metric I+ Then it is easy to see that

(2.13)  (FPrgy = (&P (§y Rydv, ) Vol(m,g, )~ (P-2)h,

t=0 t=0
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d

(n-2)n
= (Zp) (5Mntdv )‘t OvOl(M,g) +

(n-2)h
S Rgavy (§g7 (VoL (M, g, )" )]t ;

-(n-2)/n 3
= —2qu(q—1)Vol(M,g) j& u dvg

Since I takes a relative minimum at g, we have
3 -
(2.14)  §, wiav, = o.

This holds for any ué€ Ker([&g + —l—R ), hence for any u

n-1.g 1792

. 1
ker([§g + H:TRg), we have

0,

1]

(2.15) SM ufuzdv =1 SM«u1+u2)3—(u —u2)3—2u )dvg

. . 2. . 1
which implies < Im + + —R ).
implies u (Ag g * a-TRg

Hence the equation

n+2 2

(2.16) (D = Tac1)(n-2) RgY

is solvable for v. It is easy to see that this v also satisfies
the condition (2.12). So we assume that the v in (2.11)

satisfies the eqguatioin (2.16). Then by a calCQlation we get

(z.17) (& To)| - —4qu(q—1)vOl(M,g)““‘z”h SM(3u2v+(q—2)u4)dvg .

4
(a/dt) "I(g,) is nonnegative from our assumption, and we get
tt=0

the desired inequality.

3. Examples.

By s™(r) we denote the n-dimensional Euclidean sphere of
radius r. We suppose (M,g) = Sp(VE) xsnfp(Vn—p). Let

M=sPwp) x sPPwiaTp) &, rP*Tx wPPH!

be the canonical isometric embedding, and u & C°(M) be any one



of first (p+1) coordinate functioins of‘Rp+1>(2mn—p+1restricted

to M Then,

1 - -
(Ag + goRglu = (Ag + 1Mu = 0.

Moreover u satisfies the equation

u2 + pldu[2 = pP.

Hence putting

_ p(n+2) 2 _
V.= (p+2)(n—2)(u 2)

we have

1 n+ 2 2
([3 + —R )v = - TE:TTTE:ETRgu

and
2 P .
5M u dvg = 541 Vol(M,qg).

It is also easy to see that

2
4 32p 2 _ 3
SM u dvg T p+3JH u dvg T (p+1)(p+3) Vol(,g).
Consequently we get
2 n-6 4 24p2(n—p)
Jutau?v - 22 )AVg= = (priNp+2)(p+3)n-2) ol lM:g).

This is negative if n > 3 and 0 < p < n. Therefore it follows
from Theorem 2.1 that the function u then cannot be divergence
of a conformal vector field, which answers Q.2' négatively:

If n >3 and p = 1, then it can be shown, by using a theoren

of Gidas, Ni and Nirenberg [3], that the metric g is a solution of



the Yamabe problem ([5],[8]). Hence in this case (M,g) is a

counter-example to Q.1'. In this case however, ig is bijective

([5]1,[8]), and questions ¢.1 and Q.2 remain open.

(11

(2]

(31

[6]

(7]

(8]
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