# (Restricted) Quantized Enveloping Algebras of Simple Lie superalgebras and Universal R-Matrices

Hiroyuki Yamane (Osaka University)

In this note, we difine a (Jimbo type) quantized enveloping superalgebras  $U_q(G)$  of complex simple Lie superalgebras G of types A, B, C, D (all types) and types  $F_4$  and  $G_3$ 

(distinguished types). We can get a defining relations of  $U_q(G)$ , which are consist of q-Serre relations and <u>additional relations</u>. They were unknown even if q=1. Moreover we define a restricted quantum groups  $u_{\zeta}(G)$  at a root of unity  $\zeta$ .

Finally, we consider a <u>Hopf algebricazation</u> of the Hopf superalgebra  $u_{\zeta}(G)$ , and construct the universal R-matrix of  $u_{\zeta}(G)^{\sigma}$ . Our construction is due to Drinfeld's quantum double construction. By using quantum double construction, we can also show a Poincaré-Birkhoff-Witt type theorem for  $U_q(G)$  and  $u_{\zeta}(G)$ .

In [Y1-2], we introduced the (Drinfeld type) quantized enveloping superalgebras  $U_h(G)$ , showed  $U_h(G)$  is an h-adic topologically free C[[h]]-Hopf algebra, and gave an explicit formula of universal R-matrix of  $U_h(G)^{\sigma}$ . The

arguments used in this note are the essentially same arguments as we used in [Y2].

Here I would like to express my thanks to Professor E. Date, Professor M. Noumi, Professor T. Tanisaki, Professor J. Murakami, Professor M. Okado for their encouradgement and valuable communication. I also thanks Professor K. Nishiyama for giving me the opportunity of speaking in this symposium.

#### §1.Quantum double construction.

Let K be a field. Suppose char (K) = 0.Let  $(A,\Delta,S,\epsilon)$  is K-Hopf algebras with coproduct  $\Delta: A \to A \otimes A$ , antipode,  $S: A \to A$  and counit  $\epsilon: A \to K$ . Moreover we assume that there is a symmetric Hopf-pairing  $<,>:A \otimes A \to K$ , namely <,> is a symmetric K-bilinear form such that

 $<sup>(1) &</sup>lt;\Delta(x), y \otimes z > = < x, y z >,$ 

<sup>(2)</sup>  $\langle S(x), y \rangle = \langle x, S(y) \rangle$ ,

<sup>(3)</sup>  $<1,x>=\varepsilon(x)$ 

where  $x, y, z \in A$ .

We call a Hopf-algebra  $A^{op} = (A, \Delta^{op}, S, \varepsilon)$  the <u>opposite</u> Hopf-algebra of A where  $\Delta^{op} = \tau \cdot \Delta$  and  $\tau(x \otimes y) = y \otimes x$ .

Proposition 1.1. (Quantum double) There is a unique K-Hopf algebra  $(D = D(A), \Delta_D, S_D, \varepsilon_D)$  satisfying:

- (1) As K-vector spaces,  $D = A \otimes A$ .
- (2) The K-linear maps  $A \to A \otimes A$  ( $x \to x \otimes 1$ ) and  $A^{op} \to A \otimes A$  ( $x \to 1 \otimes x$ ) are homomorphisms of Hopf-algebras.
- (3) The product of D is defined as follows; if x,  $y \in A$  and  $\Delta^{(2)}(x) = \sum_{i} x_{i}^{(1)} \otimes x_{i}^{(2)} \otimes x_{i}^{(3)}$  and  $\Delta^{(2)}(y) = \sum_{i} y_{i}^{(1)} \otimes y_{i}^{(2)} \otimes y_{i}^{(3)}$ , then

$$(v \otimes x) \cdot (y \otimes w) = \sum_{i,j} \langle x_i^{(1)}, y_j^{(3)} \rangle \langle x_i^{(3)}, S(y_j^{(1)}) \rangle \langle v_j^{(2)} \otimes x_i^{(2)} w \rangle.$$

Proposition 1.2. (Universal R-matrix of D (A)) Assume that dim A <  $\infty$  and < , > is non-degenerate. Let  $\{e_i\}$  and  $\{e^i\}$  are two bases of A such that  $\{e_i\}$  =  $\delta_{ij}$ . Then  $R = \sum_i (e_i \otimes 1) \otimes (1 \otimes e^i) \in D \otimes D$  satisfies:

- (0)  $R^{-1} = (1 \otimes S^{-1})(R)$ .
- (1)  $R \Delta_D(a) R^{-1} = \Delta_D^{\text{op}}(a) \ (a \in D).$
- (2)  $(1 \otimes \Delta_D)(R) = R_{13}R_{12}$ ,  $(\Delta_D \otimes 1)(R) = R_{23}R_{13}$ .

Remark. From (1) and (2), we can easily see that R satisfies the <u>Yang-Baxter equation</u>:

$$R_{12}R_{13}R_{23} = R_{23}R_{13}R_{12}$$
.

Therefore R is called the universal R-matrix of D.

### §2. Quantized enveloping (super)algebras.

Here we give an abstruct definition of <u>Quantized enveloping (super)algebras</u> by using the <u>Quantum double construction</u>.

Let  $\mathbb{E}$  be an N-dimensional K-vector space. Assume that there is a non-degenerate bi-linear form  $(\ ,\ ):\mathbb{E}\times\mathbb{E}\to K$  with a basis  $\{\underline{\varepsilon}_i\mid 1\le i\le N\ \}$  such that  $(\underline{\varepsilon}_i,\underline{\varepsilon}_j)=0\ (i\neq j),\ (\underline{\varepsilon}_i,\underline{\varepsilon}_i)\in Z$  -  $\{0\}$ . Let  $\Pi=\{\alpha_i\in\mathbb{E}\mid 1\le i\le n\}$  be the set of linearly independent elements. Suppose that  $(\alpha_i,\alpha_j)\in (1/4)Z$ . Let  $p:\Pi\to \mathbb{Z}/2\mathbb{Z}=\{0,1\}$  be the function. Write p(i) for  $p(\alpha_i)$ . We call p the parity function  $P_+=\mathbb{Z}\underline{\varepsilon}_1\oplus\dots\oplus\mathbb{Z}\underline{\varepsilon}_N$ .

Let  $q \in K^{\times}$ . Let  $U_{q}^{\sim} b_{+}^{\sigma}$  be a K-algebra with generators  $\{E_{i} \ (1 \le i \le n), K_{\lambda} \ (\lambda \in P_{+}), \sigma\}$  and defining relations:

$$(U^{\sim}.1)$$
  $\sigma^2 = 1$ ,  $\sigma E_i \sigma = (-1)^{p(i)} E_i$ ,  $\sigma K_{\lambda} \sigma = K_{\lambda}$ ,

(U~.2) 
$$K_0 = 1$$
,  $K_{\lambda}K_{\mu} = K_{\lambda+\mu} (\lambda , \mu \in P_+)$ ,

$$(U^{\sim}.3)$$
  $K_{\lambda}E_{i}K_{\lambda}^{-1}=q^{(\alpha i,\lambda)}E_{i}.$ 

Moreover  $U_q^{\sim} b_+^{\sigma}$  has a K-Hopf algebra such that

$$(U^{\sim}.4) \ \Delta(\sigma) = \sigma \otimes \sigma, S(\sigma) = \sigma, \varepsilon(\sigma) = 1,$$

$$(U^{\sim}.5) \ \Delta(K_{\lambda}) = K_{\lambda} \otimes K_{\lambda}, \ S(K_{\lambda}) = K_{\lambda}^{-1}, \ \epsilon(K_{\lambda}) = 1,$$

$$(\mathbf{U}^{\sim}.6) \ \Delta(\mathbf{E_{i}}) = \mathbf{E_{i}} \otimes 1 + \mathbf{K}_{\alpha_{i}} \sigma^{p(i)} \otimes \mathbf{E_{i}} \ , \ \mathbf{S}(\mathbf{E_{i}}) = -\mathbf{K}_{\alpha_{i}}^{-1} \sigma^{p(i)} \mathbf{E_{i}} \ , \ \varepsilon(\mathbf{E_{i}}) = 0 \ .$$

Let  $U_q^b$  (resp.  $U_q^n$ ,  $\mathbb{T}$ ) be an unital subalgebra generated by the elements  $\{E_i \ (1 \le i \le n), \ K_\lambda \ (\lambda \in P_+)\}$  (resp.  $\{E_i \ (1 \le i \le n)\}, \ \{K_\lambda \ (\lambda \in P_+)\}$ ).

Let  $\mathbb{I}$  be the set of finite sequenses of  $\{1,...,n\}$ . Put  $E_{\mathbf{I}} = E_{i_1}E_{i_2}...E_{i_p}$  for  $\mathbf{I} = (i_1,i_2,...,i_p) \in \mathbb{I}$  and put  $E_{\phi} = 1$ .

Lemma 2.1. As a K - vector space,  $U_q^{\bullet}b_+^{\bullet}$  has a basis elements such that

$$E_{\bf I}K_{\lambda}\sigma^c$$
 (  ${\bf I}\in\mathbb{I}$  ,  $\lambda\in\,P_+$  ,  $c\in\{0,\,1\}$  ). In particular, we have

$$U_q^{\bullet}b_+^{\sigma} \cong U_q^{\bullet}n_+^{\bullet} \otimes \mathbb{T} \otimes K < \sigma > \text{ as } K \text{-vector spaces.}$$

Proposition 2.2. There is a symmetric Hopf-pairing <, >:  $U^{\circ}_{q}b_{+}^{\sigma}\otimes U^{\circ}_{q}b_{+}^{\sigma}\rightarrow K$  such that

(P.1) 
$$\langle \sigma, E_{\mathbf{I}} K_{\lambda} \sigma^{c} \rangle = \delta_{\mathbf{I} \phi} (-1)^{c},$$

(P.2) 
$$\langle K_{\mu}, E_{I}K_{\lambda}\sigma^{c} \rangle = \delta_{I\phi} q^{(\mu,\lambda)},$$

(P.3) 
$$\langle E_i, E_I K_{\lambda} \sigma^c \rangle = \delta_{I(i)}.$$

We put  $I_{b_+}{}^{\sigma} = \text{Ker} <$ , > and put  $u_q b_+{}^{\sigma} = U^{\sim}_q b_+{}^{\sigma} / I_{b_+}{}^{\sigma}$ . Let  $D(u_q b_+{}^{\sigma})$  be the quantum doble of  $u_q b_+{}^{\sigma}$  with respect to <, >. For  $X \in u_q b_+{}^{\sigma}$ , we write X,  $X^{op}$  for  $X \otimes 1$ ,  $1 \otimes X \in D(u_q b_+{}^{\sigma})$  respectively.

Lemma 2.3. In  $D(u_q b_+^{\sigma})$ , the following equations hold:

$$\begin{split} (D^{\sim}.1) & \sigma \cdot \sigma^{op} = \sigma^{op} \cdot \sigma \;, \; \sigma K_{\lambda}^{op} \sigma = K_{\lambda}^{op} \;, \; \sigma E_{i}^{op} \sigma = (-1)^{p(i)} E_{i}^{op} \;, \\ & \sigma^{op} K_{\lambda} \sigma^{op} = K_{\lambda} \;, \; \sigma^{op} E_{i} \sigma^{op} = (-1)^{p(i)} E_{i} \;, \end{split}$$

$$\begin{split} (D^{\sim}.2) \ \ & K_{\lambda} \cdot K_{\mu}^{\ \ op} = K_{\mu}^{\ \ op} \cdot K_{\lambda} \,, \\ & K_{\lambda} E_{i}^{\ \ op} K_{\lambda}^{-1} = q^{-(\alpha_{i},\lambda)} E_{i}^{\ \ op} \,, \, K_{\lambda}^{\ \ op} E_{i} K_{\lambda}^{\ \ op-1} = q^{-(\alpha_{i},\lambda)} E_{i} \,, \\ (D^{\sim}.3) \ \ & E_{i} \cdot E_{i}^{\ \ op} - E_{i}^{\ \ op} \cdot E_{i} = \delta_{ij} (K_{\alpha_{i}}^{\ \ op} \sigma^{op} p(i) - K_{\alpha_{i}} \sigma^{p(i)}) \,. \end{split}$$

Let L be ideal of K-algebra  $D(u_q b_+^{\sigma})$  generated by  $\sigma \cdot \sigma^{op} - \sigma^{op} \cdot \sigma$  and  $K_{\lambda} \cdot K_{\lambda}^{op} - K_{\lambda}^{op} \cdot K_{\lambda}$  ( $\lambda \in P_+$ ). It is clear that L is a Hopf-ideal. Put

$$\mathbf{u_q}^{\sigma} = \mathbf{u_q}^{\sigma}(\mathbb{E}.\Pi.p) = \left.D\left(\mathbf{u_q}\mathbf{b_+}^{\sigma}\right)\right/L \; .$$

$$\mathrm{Put} \quad \mathrm{u}_q \mathrm{n}_+ = \mathrm{U}^{\sim}_q \mathrm{n}_+ / (\mathrm{I}_{b_+}{}^{\sigma} \cap \mathrm{U}^{\sim}_q \mathrm{n}_+), \ \ \mathfrak{t} = \mathbb{T} / (\mathrm{I}_{b_+}{}^{\sigma} \cap \mathbb{T}).$$

Lemma 2.4. (1) As K -vector spaces,

$$\mathbf{u_q}^{\sigma} \cong \mathbf{u_q}^{n_+} \otimes \mathbf{t} \otimes \mathbf{K} < \sigma > \otimes \mathbf{u_q}^{n_+} \; (\mathbf{X} \mathbf{t} \sigma^{c} \mathbf{Y}^{op} \leftarrow \mathbf{X} \otimes \mathbf{t} \otimes \sigma^{c} \otimes \mathbf{Y} \; ).$$

- (2) For  $1 \le i \le N$ , let  $\gamma_i = \min\{\gamma \mid K\underline{\varepsilon}_i^{\gamma} = 1\} \in \mathbf{Z}_+ \cup \{+\infty\}$ . Then the elements  $K\underline{\varepsilon}_1^{\delta 1} \cdots K\underline{\varepsilon}_N^{\delta N} (0 \le \delta_i < \gamma_i)$  form a K-basis of t.
- (3) Let  $u_q$  be an unital subalgebra of  $u_q^{\sigma}$  generated by the elements  $\{E_i, \dot{F}_i = E_i^{\sigma p} \sigma^{p(i)} \ (1 \le i \le n), \ K_{\lambda} \ (\lambda \in P_+)\}$ . Then there is a Hopf-superalgebra structure on  $u_q$  with coproduct  $\dot{\Delta}$  defined by

$$\dot{\Delta}(K_{\lambda}) = K_{\lambda} \otimes K_{\lambda} , \dot{\Delta}(E_{i}) = E_{i} \otimes 1 + K_{\alpha_{i}} \otimes E_{i} , \dot{\Delta}(\dot{F}_{i}) = \dot{F}_{i} \otimes K_{\alpha_{i}}^{-1} + 1 \otimes \dot{F}_{i} .$$

Theorem 2.5. Assume that q an indeterminate and K=C(q). Suppose that  $(\alpha_i,\alpha_i)>0$ ,  $(\alpha_i,\alpha_i)\leq 0$  and  $2(\alpha_i,\alpha_j)/(\alpha_i,\alpha_i)\in Z$ . Let  $\underline{G}$  be the Kac-Moody Lie algebra defined for  $(\ ,\ ):\mathbb{E}\times\mathbb{E}\to K$  and  $\Pi$ . Then  $u_q$  is isomorphic to the Drinfeld-Jimbo quantized enveloping algebra  $U_q(\underline{G})$ .  $(\mathcal{T}_{i},\omega_b,\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}_{i},\mathcal{T}$ 

Theorem 2.6. Let  $\underline{G}$  be the simple C-Lie algebra. Suppose that  $\Pi$  is the set of the simple roots of  $\underline{G}$ . Assume that K=C. Let  $\zeta$  be an m-th root of unity such that m>>1. Then  $u_{\zeta}$  is isomorphic to the Lusztig's quantum group at root of unity  $u_{\zeta}(\underline{G})$ .

Theorem 2.5 can be immediately proved by Proposition 2.4.1 in [T]. Theorem 2.6 also seems to be well-known. For example, see [R].

## §3. Root Systems of Simple Lie Superalgebras.

Let  $\mathbb G$  be simple Lie superalgebras of types  $A_{N-1}$ ,  $B_N$ ,  $C_N$ ,  $D_N$ ,  $F_4$ ,  $G_3$ . Let  $(\mathbb E,\,\Pi,\,p)$  be a triple related to a root system of  $\mathbb G$ . From now on, we only

of

treat triples  $(\mathbb{E}, \Pi, p)$  following <u>Dynkin diagrams</u>.

In the following diagrams, the element under i-th dot denotes the i-th simple root  $\alpha_i \in \Pi$ . The i-th dot  $\times$  stands for o (resp.  $\otimes$ ) if  $(\alpha_i, \alpha_i) \neq 0$  (resp. = 0). If i-th dot is o,  $\otimes$  or  $\bullet$ , then we define  $p(\alpha_i) = 0$ , 0, 1 respectively. We also define a diagonal matrix  $\mathbb{D} = (d_1, ..., d_n)$  such that  $\mathbb{A} = \mathbb{D}^{-1}((\alpha_i, \alpha_j))$  is a Cartan matrix of  $\mathbb{G}$ .

$$(G_3) \qquad \otimes \longrightarrow 0 < \equiv \equiv 0 ,$$

$$\underline{\varepsilon}_1 - \underline{\varepsilon}_2 \quad (\underline{\varepsilon}_2 - \underline{\varepsilon}_3)/2 \quad \underline{\varepsilon}_3$$

$$(\underline{\varepsilon}_1, \underline{\varepsilon}_1) = -2, \quad (\underline{\varepsilon}_2, \underline{\varepsilon}_2) = 2, \quad (\underline{\varepsilon}_3, \underline{\varepsilon}_3) = -6, \quad \mathbb{D} = \text{diag}(1,3,1) .$$

## §4. Defining relations of $u_q^{\sigma}(\mathbb{E}.\Pi.p)$ of Simple Lie Superalgebras $\mathbb{G}$ .

Here we give defining relations of  $u_q n_+$  of  $u_q^{\sigma}(\mathbb{E}.\Pi.p)$  (see Lemma 2.4) when q is not a root of unity.

Put  $P_+ = \mathbf{Z}\alpha_1 \oplus \cdots \oplus \mathbf{Z}\alpha_N$ . We extend p to  $p: P_+ \to \mathbf{Z}/2\mathbf{Z}$  additively. For  $\delta = m_1\alpha_1 + \cdots + m_N\alpha_N \in P_+$ , let  $(u_qn_+)_\delta$  be a K-subspace of  $u_qn_+$  spaned by elements  $E_{i_1}E_{i_2}\cdots E_{i_p}$  (# $\{i_a=i\}=m_i\}$ ). Then we have  $u_qn_+ = \oplus_{\delta\in P_+} (u_qn_+)_\delta$ . For  $\delta$ ,  $\nu \in P_+$  and  $\lambda_0 \in (u_qn_+)_\delta$ ,  $\lambda_0 \in (u_qn_+)_\delta$ , put

$$ad_{[\cdot,\cdot]}X_{\delta}(X_{v}) = [X_{\delta}, X_{v}] = X_{\delta}X_{v} - (-1)^{p(\delta)p(v)}q^{-(\delta,v)}X_{v}X_{\delta}.$$

Theorem 4.1. Let  $(\mathbb{E}.\Pi.p)$  be a triple introduced in §3. Assume that q is not a root of unity. Let  $u_q n_+$  be of be of  $u_q^{\sigma}(\mathbb{E}.\Pi.p)$  (see Lemma 2.4). Then, as K-algebra,  $u_q n_+$  is defined with the generators  $E_i$  ( $1 \le i \le n$ ) and the relations:

- (r1)  $[E_{i}, E_{j}] = 0$  if  $(\alpha_{i}, \alpha_{j}) = 0$ ,
- (r2)  $(ad_{i,j}E_{i})^{mij}(E_{j}) = 0$  if  $(\alpha_{i},\alpha_{i}) \neq 0$  and  $m_{ij} = 2(\alpha_{i},\alpha_{j})/(\alpha_{i},\alpha_{i}) \in \mathbb{Z}$ ,
- (r3)  $(ad_{l,l}E_N)^3(E_{N-1}) = 0$  if  $\times$

(r5) 
$$[[E_{N-2}, E_{N-1}], E_{N}] = [[E_{N-2}, E_{N}], E_{N-1}]$$

if

# §5. Root vectors of $u_q^{\sigma}(\mathbb{E}.\Pi.p)$ of Simple Lie Superalgebras $\mathbb{G}$ .

Here we assume that there is m >> 1 satisfying  $q^{\underline{m}} \neq 1$  for  $1 \leq \underline{m} \leq m$ . Assume that  $(\mathbb{E}.\Pi.p)$  is the triple in §3. Let  $\Phi$  be the set of roots of  $\mathbb{G}$  and  $\Phi_+$  the set of positive roots with respect to  $\Pi$ . Let  $\Phi_+^{red}$  be the set of positive roots defined by

$$\begin{split} & \Phi_{+}^{\ red} = \{\beta \in \Phi_{+} \, \big| \, \beta/2 \not\in \Phi_{+} \}. \ \ \text{For} \ \ \beta = c_{1}\alpha_{1} + \dots + c_{N}\alpha_{N} \in P_{+} \, , \, \text{put} \\ & \text{ht}(\beta) = c_{1} + \dots + c_{N} \, , \, g(\beta) = \min\{i \, \big| \, i \neq 0 \} \, \, \text{and} \, \, c_{\beta} = c_{g(\beta)} \, . \end{split}$$

Define a half integer  $\underline{\underline{ht}}(\beta)$  by  $\underline{\underline{ht}}(\beta) = ht(\beta)/c_{\beta}$ . For  $\alpha$ ,  $\beta \in P_{+}$ , we say that  $\alpha < \beta$  if they satisfy one of the following  $e^{\frac{1}{2}}Z$ 

- (1)  $g(\alpha) < g(\beta)$ ,
- (2)  $g(\alpha) = g(\beta)$  and  $\underline{ht}(\alpha) = \underline{ht}(\beta)$ ,
- (3)  $\Pi$  is of type  $D_N$ ,  $p(\underline{\varepsilon}_i \underline{\varepsilon}_N) = 0$  and  $\alpha = \underline{\varepsilon}_i \underline{\varepsilon}_N$ ,  $\beta = 2\underline{\varepsilon}_i$  or

$$\alpha = 2\underline{\varepsilon}_i$$
,  $\beta = \underline{\varepsilon}_i + \underline{\varepsilon}_N$  or  $\alpha = \underline{\varepsilon}_i - \underline{\varepsilon}_N$ ,  $\beta = \underline{\varepsilon}_i + \underline{\varepsilon}_N$ .

We define q-root vectors  $E_{\beta}$  (  $\beta \in \Phi_+^{red}$ ) of  $u_q n_+$  of  $u_q^{\sigma}(\mathbb{E}.\Pi.p)$  as follows.

Definition 5.1. For  $\beta \in \Phi_+^{red}$ , we define the element  $E_\beta \in u_q n_+$  as follows. (For type  $F_4$ , (resp.  $G_3$ ), we write  $E_{abcd}$  and  $\dot{E}_{abcd}$  (resp.  $E_{abc}$  and  $\dot{E}_{abc}$ ) for  $Ea\alpha_1 + b\alpha_4 + c\alpha_3 + d\alpha_2$  and  $\dot{E}a\alpha_1 + b\alpha_4 + c\alpha_3 + d\alpha_2$  (resp.  $Ea\alpha_1 + b\alpha_3 + c\alpha_2$  and  $\dot{E}a\alpha_1 + b\alpha_3 + c\alpha_2$ ).

- (1) We put  $E\alpha_i = E_i \ (1 \le i \le n)$ .
- (2) Let  $\alpha \in \Phi_{+}^{red}$  and  $1 \le i \le n$  be such that  $g(\beta) < i$  and  $\alpha + \alpha_{i} \in \Phi$ . Put  $\dot{E}\alpha + \alpha_{i} = [\dot{E}_{\alpha}^{}, E_{i}^{}]$ . If  $\Pi$  is of type  $B_{N}^{}$ , i = N and  $\alpha = \underline{\epsilon}_{j}^{}$   $(1 \le j \le N-1)$ , let  $E\alpha + \alpha_{N}^{} = (q^{1/2} + q^{-1/2})^{-1} \dot{E}\alpha + \alpha_{N}^{}$ . If  $\Pi$  is of type  $D_{N}^{}$ , i = N and  $\alpha = \alpha_{N-1}^{}$ , let  $E\alpha + \alpha_{N}^{} = (q + q^{-1})^{-1} \dot{E}\alpha + \alpha_{N}^{}$ . If  $\Pi$  is of type  $F_{4}^{}$ , let  $E_{1120}^{} = (q + q^{-1})^{-1} \dot{E}_{1120}^{}$  and  $E_{1232}^{} = (q^2 + 1 + q^{-2})^{-1} \dot{E}_{1232}^{}$ . If  $\Pi$  is of type  $G_{3}^{}$ , let  $E_{121}^{} = (q + q^{-1})^{-1} \dot{E}_{121}^{}$ ,  $E_{021}^{} = (q + q^{-1})^{-1} \dot{E}_{021}^{}$  and  $E_{031}^{} = (q^2 + 1 + q^{-2})^{-1} \dot{E}_{031}^{}$ . Otherwise, put  $E\alpha + \alpha_{i}^{} = \dot{E}\alpha + \alpha_{i}^{}$ .
- (3) Let  $\alpha, \beta \in \Phi_+^{\text{red}}$  such that  $g(\alpha) = g(\beta)$ ,  $\alpha < \beta$ ,  $\underline{\text{ht}}(\beta) \underline{\text{ht}}(\alpha) \le 1$  and  $\alpha + \beta \in \Phi_+^{\text{red}}$ . Put  $\dot{E}_{\alpha+\beta} = [\dot{E}_{\alpha}, \dot{E}_{\beta}]$ . If  $\Pi$  is of type  $C_N$  (resp.  $D_N$ ,  $F_4$  or  $G_3$ ), then  $E_{\alpha+\beta}$  is defined by  $(q+q^{-1})^{-1}\dot{E}_{\alpha+\beta}$  (resp.  $(q+q^{-1})^{-1}\dot{E}_{\alpha+\beta}$ ,  $(q^2+q^{-2})^{-1}\dot{E}_{\alpha+\beta}$  or  $(q^2+1+q^{-2})^{-1}\dot{E}_{\alpha+\beta}$ ).

By using similar computations in [Y2], we have

Proposition 5.2. (1) As a K-vector space,  $u_q^n$  is spaned by the elements

< 
$$n_{\alpha}$$
 $\Pi$ 
 $E_{\alpha}$ 
 $\alpha \in \Phi_{+}^{\text{red}}$ 
 $(n_{\alpha} \in \mathbb{Z}_{+} \text{ if } (\alpha, \alpha) \neq 0, n_{\alpha} = 0, 1 \text{ if } (\alpha, \alpha) \neq 0).$ 

Here  $\Pi$  denote a product taken with a total order on  $\Phi_{+}^{\text{red}}$   $\alpha \in \Phi_{+}^{\text{red}}$ 

compatible with the partial order < .

(2)

$$< n_{\alpha} < m_{\alpha}$$

$$< \Pi E_{\alpha} , \Pi E_{\alpha} >$$

$$\alpha \in \Phi_{+}^{red} \qquad \alpha \in \Phi_{+}^{red}$$

$$= \prod_{\substack{\alpha \in \Phi_{+}^{\text{red}}}}^{<} \delta_{n_{\alpha}m_{\alpha}} \psi(n_{\alpha}; (-1)^{p(\alpha)} q^{(\alpha,\alpha)}) < E_{\alpha}, E_{\alpha}^{\alpha}>$$

Here  $\psi(n; t) = \prod_{1 \le i \le n} \{(t^{i-1})/(t-1)\}$ .

§6. Poincaré-Birkhoff-Witt type Theorem  $\mathbf{u}_{\mathbf{q}}^{\sigma}(\mathbb{E}.\Pi.p)$  of Simple Lie Superalgebras  $\mathbb{G}$ .

Define  $d_{\alpha} \in (1/2)\mathbb{Z}_{+}$  by  $d_{\alpha} = |(\alpha, \alpha)|/2$  if  $(\alpha, \alpha) \neq 0$ ,  $d_{\alpha} = 2$  if  $\Pi$  is of type  $G_3$  and  $\alpha = \alpha_1 + 2\alpha_3 + c\alpha_2$ ,  $d_{\alpha} = 1$  otherwise. For  $\alpha = c_1\alpha_1 + \cdots + c_N\alpha_N \in P_{+}$ , put

$$\begin{split} b(\alpha) &= (q^{d\alpha} - q^{-d\alpha}) {<} E_{\alpha} \;,\; E_{\alpha} {>} / \Pi_{1 \leq i \leq n} \, (q^{di} - q^{-di})^{ci} \quad \text{and} \\ \gamma_{\alpha} &= \; \min \{ \gamma \, \big| \, \psi(\gamma \, ; \; (\text{-}1)^{p(\alpha)} q^{(\alpha,\alpha)}) \, = 0 \} \in \, \mathbf{Z}_{+} \cup \{ + \infty \}. \end{split}$$

Lemma 6.1.  $b(\alpha)$  can be written as  $(-1)^a q^b$  for some  $a, b \in \mathbb{Z}_+$ . (For the precise value of  $b(\alpha)$ , see [Y2; Lemma 10.3.1]).

By Proposition 5.2 and Lemma 6.1, we have:

Theorem 6.2. (PBW-type theorem) The elements

$$< \delta_{\alpha}$$

$$\Pi \quad E_{\alpha}$$

$$\alpha \in \Phi_{+}^{\text{red}} \quad (0 \le \delta_{\alpha} < \gamma_{\alpha})$$

form a K-basis of  $u_q n_+$ .

Proposition 6.3. Let m > 10 and  $\zeta$  a primitive m-th root of unity. Then, as K-algebra,  $u_{\zeta}n_{+}$  is defined with the generators  $E_{i}$  ( $1 \le i \le n$ ) and the relations (r1-7) in Theorem 4.1 and relations

$$\gamma_{\alpha}$$
(rr1)  $E_{\alpha} = 0 \quad (\alpha \in \Phi_{+}^{red})$ .

 $\underbrace{\$7. \ Universal \ R\text{-}matrix}^{\circ, \downarrow} u_\zeta^{\sigma}(\mathbb{E}.\Pi.p) \ \underline{of \ Simple \ Lie \ Superalgebra} \ \mathbb{G} \ .$  Keep notation in §3-6. For  $\alpha = c_1\alpha_1 + \dots + c_N\alpha_N \in P_+$ , put  $F_\alpha = (\Pi_{1 \leq i \leq n} \ (q^{-di} - q^{di})^{Ci})^{-1}(E_\alpha)^{op}\sigma^{p(\alpha)} \quad (\text{see Lemma 4.2}) \ \text{ and }$   $u(\alpha) = (-1)^{ht(\alpha)}/b(\alpha) \ .$ 

Theorem 7.1. (<u>Universal R-matrix of</u>  $u_{\zeta}^{\sigma}$ ) Keep notation in Proposition 6.3.

The Universal R-matrix 
$$R$$
 of  $u_{\zeta}^{\sigma} = u_{\zeta}^{\sigma}(\mathbb{E}.\Pi.p)$  is given by

$$R = \{ \prod_{\alpha \in \Phi_{+}^{\text{red}}} (\sum_{0 \le \delta_{\alpha} < \gamma_{\alpha}} (q^{d\alpha} - q^{-d\alpha}) u(\alpha) E_{\alpha} \otimes F_{\alpha} \sigma^{p(\alpha)})$$

$$\psi(n_{\alpha}; (-1)^{p(\alpha)} q^{(\alpha,\alpha)})$$

$$\begin{array}{lll} \cdot \; \{1/2 \quad \Sigma & (-1)^{cd} \sigma^c \otimes \sigma^d \; \} & \Pi \quad \{ (1/\gamma_i) \quad \Sigma \quad \zeta^{-(\underline{\varepsilon}i,\underline{\varepsilon}i)\delta i \varphi} {}^i K_{\underline{\varepsilon}i}{}^{\delta i} \otimes K_{\underline{\varepsilon}i}{}^{\varphi i} \; \} \\ 0 \leq c, \, d \leq 1 & 1 \leq i \leq N \quad 0 \leq \delta_i \, , \, \varphi_i < \gamma_i \end{array}$$

#### References.

- [T] T. Tanisaki: Killing forms, Harish-Chandra isomorphisms, and universal R-matrices for quantum algebras, to appear in Proc. of Project 91, RIMS.
- [R] M. Rosso: A Lecture in 19-th summer research institute at Penn State Univ.. (1991).
- [Y1] H. Yamane: Universal R-matrices for quantum groups associated to simple Lie superalgebras, Proc. Japan Acad. 67 (1991), 385-386.
- [Y2] H. Yamane: Universal R-matrices for quantized enveloping algebras associated to simple Lie superalgebras, (preprint) (1991).