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1.1 Collision processes in the three-body problem

We consider collision processes of quantum mechanical three particles la-
belled by 1, 2, 3. Suppose in the initial state the two of them form a bound
state, denoted by $(1,2)$ , and the third particle collides with this pair. Then
there occurs one of the following five phenomena:

$(1, 2)+(3)\Rightarrow\{\begin{array}{l}(a)(l,2)+(3)(b)(1,2)^{*}+(3)_{*}(c)(1,2)’+(3)(d)(1,3)+(2)(e)(1)+(2)+(3)\end{array}$

(a) is an elastic process. In (b), the energy of the pair changes. In (c), the
energy of the pair does not change, but this pair takes a different state
(which happens when the eigenvalue is degenerate). (d) is a rearrangement
process. Finally in (e), all of the three particles move freely after the collision.
The first four cases are treated in essentially the same way as in the 2-body
problem. So, we consider the properties of the S-matrix associated with the
case (e).

1.2 S-matrix

In $R^{3}$ we consider three particles with mass $m_{i}$ and position $x^{i}$ . We choose
a pair $(i,j)$ and denote it by $\alpha$ . Let

$\frac{1}{m_{\alpha}}=\frac{1}{m_{i}}+\frac{1}{m_{j}}$ , $\frac{1}{n_{\alpha}}=\frac{1}{m_{k}}+\frac{1}{m_{i}+m_{j}}$

be the reduced masses and
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$x^{\alpha}=\sqrt{2m_{\alpha}}(x^{i}-x^{j})$ , $x_{\alpha}= \sqrt{2n_{\alpha}}(x^{k}-\frac{m_{i}x+m_{j}x^{j}}{m_{1}\cdot+m_{j}})$

be the relative coordinates. Let

$X= \{(x^{1}, x^{2}, x^{3});\sum_{1=1}^{3}m_{i}x^{i}=0\}$ .

Then in $L^{2}(X)$ the Schr\"odinger operator is given by

$H=H_{0}+ \sum_{\alpha}V_{\alpha}(x^{\alpha})$
, $H_{0}=-\triangle_{x^{\alpha}}-\triangle_{x_{\alpha}}$ . (1.1)

If the pair potentials are short-range, the wave operators are known to exist:

$W_{0}^{\pm}= s-\lim_{\ellarrow\pm\infty}e^{itH}e^{-itH_{0}}$ , (1.2)

$W_{\alpha}^{\pm}= s-\lim_{tarrow\pm\infty}e^{itH}e^{-itH_{\alpha}}J_{\alpha}$, (1.3)

where
$H_{\alpha}=H_{0}+V_{\alpha}$ , $(J_{\alpha}f)(x^{\alpha},x_{\alpha})=u_{\alpha}(x^{\alpha})f(x_{\alpha})$ , (1.4)

$u_{\alpha}$ being a normalized eigenfunction of $h^{\alpha}=-\triangle_{x^{\alpha}}+V_{\alpha}(x^{\alpha})$ with eigenvalue
$E^{\alpha}<0$ . The scattering operator $S_{0\alpha}$ is defined by

$S_{0\alpha}=(W_{0}^{+})^{*}W_{\alpha^{-}}$ . (1.5)

To introduce the S-matrix, we use unitary operators $\mathcal{F}0$ : $L^{2}(R^{6})arrow$

$L^{2}((0, \infty);L^{2}(S^{5}))$ and $\mathcal{F}_{\alpha}$ : $L^{2}(R^{3})arrow L^{2}((E^{\alpha}, \infty);L^{2}(S^{2}))$ defined by

$( \mathcal{F}_{0}f)(\lambda,\theta)=C_{0}(\lambda)\int_{R^{t}}e^{-;\sqrt{\lambda}\theta\cdot x}f(x)dx$ ,
(1.6)

$C_{0}(\lambda)=(2\pi)^{-3}2^{-1/2}\lambda$ ,

$( \mathcal{F}_{\alpha}f)(\lambda,\omega)=C_{\alpha}(\lambda)\int_{R^{3}}e^{-i\sqrt{\lambda-E^{\alpha}}x}4l\cdot f(x)dx$,
(1.7)

$C_{\alpha}(\lambda)=(2\pi)^{-3/2}2^{-1/2}(\lambda-E^{\alpha})^{1/4}$ .
Let

$\hat{S}_{0\alpha}=\mathcal{F}_{0}S_{0\alpha}\mathcal{F}_{\alpha}^{*}$ . (1.8)

Then as is well-known, $\hat{S}_{0\alpha}$ is decomposable, namely, for any $\lambda>0$ , there
exists a bounded operator $\hat{S}_{0\alpha}(\lambda)\in B(L^{2}(S^{2});L^{2}(S^{5}))$ such that

$(\hat{S}_{0\alpha}f)(\lambda,\theta)=(\hat{S}_{0\alpha}(\lambda)f(\lambda, \cdot))(\theta)$

for a.e. $\lambda>0,$ $\theta\in S^{5}$ and all $f\in L^{2}((E^{\alpha}, \infty);L^{2}(S^{2}))$ . This $\hat{S}_{0\alpha}(\lambda)$ is
called the S-matrix. Note that this definition contains a sort of ambiguity.
Two families of operators $\{\hat{S}_{0\alpha}(\lambda)_{i}\}_{\lambda=0}^{\infty}(i=1,2)$ define the same scattering
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operator $S_{0\alpha}$ , if $\hat{S}_{0\alpha}(\lambda)_{1}=\hat{S}_{0\alpha}(\lambda)_{2}$ for a.e. $\lambda>0$ . The study of this family of
operators $\{\hat{S}_{0\alpha}(\lambda)\}_{\lambda 0}^{\infty_{=}}$ is not an easy problem. The general result known so
far is that of Amrein-Pearson-Sinha [1] and Enss-Simon [5] asserting that
$\hat{S}_{0\alpha}(\lambda)$ is a Hilbert-Schmidt operator for $a.e.\lambda>0$ , if the pair potentials
decay faster than $|x^{\alpha}|^{-2}$ . Our aim is to show that there is a representative
$\{\hat{S}_{0\alpha}(\lambda)\}_{\lambda=0}^{\infty}$ continuous in $\lambda>0$ and to investigate its detailed properties.

1.3 Main results (1)

We assume that $V_{\alpha}$ is a real $c\infty$-function such that for a constant $\rho>0$

$|\partial_{y}^{m}V_{\alpha}(y)|\leq C_{m}(1+|y|)^{-\rho-m}$ , $m=0,1,2,$ $\ldots$ , (1.9)

where $\partial_{y}^{m}$ denotes an arbitrary derivative of m-th order with respect to $y$ ,
and $C_{m}$ is a constant. This assumption is stronger than actually needed.
One can also allow certain local singularities for $V_{\alpha}$ . Let

$X_{\beta}=\{x\in X;x^{\beta}=0\}$ ,

and define
$M=S^{5}\backslash \cup\rho X\rho$ , $N=S^{5}\cap(\cup\rho X\rho)$ .

Theorem 1.1 (1) Suppose $\rho>4+1/2$ . Then $\hat{S}_{0\alpha}(\lambda)$ has a continuo$\iota\iota s$ kernel
outside $N$ :

$\hat{S}_{0\alpha}(\lambda;\theta,\omega)\in C((0, \infty)\cross M\cross S^{2})$ .
(2) $Sup$pose $\rho>5+1/2$ . Let $\beta$ be any pair and decompose $\theta\in S^{5}$ as
$\theta=(\theta^{\beta},\theta_{\beta})$ in accordance with the choice of the Jacobi-coordinates. Then
as $|\theta^{\beta}|arrow 0$ ,

$\hat{S}_{0\alpha}(\lambda;\theta,\omega)\simeq|\theta^{\beta}|^{-1}A_{\beta,-1}(\lambda;\frac{\theta^{\beta}}{|\theta^{\beta}|},\theta_{\beta},\omega)+A_{\beta,0}(\lambda;\frac{\theta^{\beta}}{|\theta^{\beta}|},\theta\rho,\omega)$,

where

$A_{\beta,-1}( \lambda;\frac{\theta^{\beta}}{|\theta^{\beta}|},\theta_{\beta)}\omega)$

$= \sum_{j}^{fini\ell\epsilon}C_{\beta 1}^{(j)}(\lambda;\theta_{\beta},\omega)\cross\int_{R^{S}}\frac{\theta^{\beta}}{|\theta^{\beta}|}\cdot x^{\beta}V_{\beta}(x^{\beta})u_{\beta^{j)}}^{(}(x^{\beta})dx^{\beta}$

$+C_{\beta 2}( \lambda;\theta\rho,\omega)\cross\int_{R^{S}}V_{\beta}(x^{\beta})\varphi\rho(x^{\beta})dx^{\beta}$ ,

$u_{\beta}^{(j)}$ being the eigenfunction with zero eigenvalue for $h^{\beta}$ , and $\varphi\rho$ the zero-
resonance. $A\rho,0$ is continuous with respect to all of its arguments. $A_{\beta,-1}=$

$0$ , if $\theta$ is neither an eigenvalue nor the resonance for $h^{\beta}$ . In this case,
$\hat{S}_{0\alpha}(\lambda;\theta,\omega)$ is continuous at $\theta^{\beta}=0$ .
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In the course of the proof, we shall see that $\hat{S}_{0\alpha}(\lambda)$ is a $B(L^{2}(S^{2});L^{2}(S^{5}))$

-valued continuous function of $\lambda>0$ if $\rho>5+1/2$ . The zero-resonance $\varphi\rho$

is the solution of the equation $h^{\beta}\varphi\rho=0$ which behaves like $\varphi\rho\simeq C/|x^{\beta}|$ as
$|x^{\beta}|arrow\infty,$ $C\neq 0$ . From our proof, one can see that if the pair potentials
decay sufficiently rapidly, $\hat{S}_{0\alpha}(\lambda;\theta,\omega)$ is smooth on $M\cross S^{2}$ , but the zero
eigenvalue and the zero-resonance are known to exist even if the potential
is compactly supported. (See e.g. [3]). For the S-matrix from 2 to 3 cluster
scattering, it is therefore the zero-eigenfunctions and the zero-resonances of
subsystems that determines its singularities.

As for the coefficients $C_{\beta 1}^{(j)}(\lambda;\theta\rho,\omega)$ and $C_{\beta 2}(\lambda;\theta\rho,\omega)$, we have

Theorem 1.2 Up to a multiplicative constant depending only on $\lambda$ and $E^{\alpha}$ ,
$C_{\beta 1}^{(j)}(\lambda;\theta\rho,\omega)$ and $C_{\beta 2}(\lambda;\theta\rho,\omega)$ coincide with the scattering amplitudes for
2 cluster scattering.

More precisely, $C_{\beta 1}^{(j)}(\lambda;\theta\rho,\omega)$ and $C_{\beta 2}(\lambda;\theta\rho,\omega)$ are the scattering ampli-
tudes for 2-cluster scattering in which, after the collision, the pair $\beta$ becomes
the bound state with zero energy or the zero-resonance, respectively. One
should note that the notion of 2-cluster scattering associated with the zero-
resonance is somewhat ambiguous since it has not yet been introduced in
mathematical literatures. So, we shall begin by explaining the meaning of
Theorem 1.2.

1.4 Generalized eigenfunctions

We first recall the 2-body problem. The generalized eigenfunction $\varphi(x,\xi)$ of
$-\triangle+V$ in $R^{n}$ is written as

$\varphi(x,\xi)=e^{ix\zeta}-v$ ,
$v=v(x,\xi)=(-\triangle+V-|\xi|^{2}-i0)^{-1}(V(x)e^{ix\xi})$ .

The first term, $e^{ix\xi}$ , represents the incident wave, and the second term, $v$ , the
scattered wave. The scattering amplitude $A(\lambda;\theta,\omega)=\hat{S}(\lambda;\theta,\omega)-\delta(\theta-\omega)$

is derived from $v$ in the following way:

$v(x, \sqrt{\lambda}\omega)\sim C(\lambda)r^{-(n-1)/2}e^{;/\overline{\lambda}r}A(\lambda;\theta,\omega)$ ,
$\theta=x/|x|$ , $r=|x|arrow\infty$ .

In the case of the three body problem, our generalized eigenfunction is
given by

$\varphi(x, \lambda,\omega)=e^{i\sqrt{\lambda-E^{\alpha}}\omega\cdot x_{\alpha}}u_{\alpha}(x^{\alpha})-v$ , (1.10)
$v=R(\lambda+iO)f$, $R(z)=(H-z)^{-1}$ , (1.11)

$f=f(x, \lambda,\omega)=\sum_{\gamma\neq\alpha}V_{\gamma}(x^{\gamma})u_{\alpha}(x^{\alpha})e^{i\sqrt{\lambda-E^{\alpha}}\omega\cdot x_{\alpha}}$
. (1.12)
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We relate the coefficients $C_{\beta 1}^{(j)},$ $C_{\beta 2}$ appearing in Theorem 1.1 to the asymp-
totic properties of $v$ .

For small positive constants $\epsilon$ and $\epsilon_{2}$ , we take smooth functions $\chi\rho(x)$

and $\psi_{\beta}(t)$ defined by

$\chi\rho(x)=\{\begin{array}{l}lif\frac{|x^{\beta}|}{|x|}<2\epsilon,|x|>l0if\frac{|x^{\beta}|}{|x|}>3\epsilon\end{array}$ (1.13)

$\psi_{\beta}(t)=\{_{0}1$ $ifif$ $|\begin{array}{ll}t- \lambda t- \lambda\end{array}|$

. (1.14)

We put
$w(x \rho)=\int_{R^{3}}u_{\beta}^{(j)}(x^{\beta})\psi_{\beta}(D_{x\rho})\chi_{\beta}(x)v(x)dx^{\beta}$ , (1.15)

where $\psi_{\beta}(D_{x\rho})$ is a pseudo-differential operator (Ps.D.Op. in short) with
symbol $\psi_{\beta}(|\xi\rho|^{2})$ , and $u_{\beta}^{(j)}(x^{\beta})$ is an eigenfunction of $h^{\beta}$ with zero eigen-
value. Note that the integral is convergent since it is actually performed on
the set $\{|x^{\beta}|\leq 2\epsilon(1-4\epsilon^{2})^{-1}|x\rho|\}$. Then we have

Lemma 1.3 The following asymptotic expansion holds :

$w(r\theta_{\beta})\sim C(\lambda)r^{-1}e^{\oint\sqrt{\lambda}r}C_{\beta 1}^{(j)}(\lambda;\theta\rho,\omega)$ ,

as $r=|x\rho|arrow\infty$ in $L^{2}(S^{2})$ . Moreover, up to a constant depending only on
$\lambda,$ $C_{\beta 1}^{(j)}(\lambda;\theta_{\beta},\omega)$ coincides with the scattering amplitude introduced by the
time-dependent method.

One should note that it is not an obvious problem to construct the
integral kernel of the 2-cluster scattering amplitude when the final state has
the zero energy. The above lemma means that the kernel does exist and is
equal to $C_{\beta 1}^{(j)}$ .

Now, one can think of the collision process, in which, after the colli-
sion, the pair $\beta$ takes the zero-resonance state. It is not easy to define the
associated scattering amplitude by the time-dependent method, since the
zero-resonance, $\varphi\rho$ , does not belong to $L^{2}(R^{3})$ . However, the stationary
method explained above works equally well for this case. We define $\tilde{w}$ by

$\tilde{w}(x\rho)=\int_{R^{3}}\varphi\rho(x^{\beta})\psi_{\beta}(D_{x\rho})\chi\rho(x)v(x)dx^{\beta}$ . (1.16)

By the same reasoning as above, this makes sense. We then have

Lemma 1.4
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$\tilde{w}(r\theta_{\beta})\sim C(\lambda)r^{-1}e^{i\sqrt{\lambda}r}C_{\beta 2}(\lambda;\theta\rho,\omega)$ ,

as $r=|x\rho|arrow\infty$ in $L^{2}(S^{2})$ .

Comparing the above two lemmas, it seems to be natural to call
$C_{\beta 2}(\lambda;\theta\rho,\omega)$ the scattering amplitude associated with the zero-resonance,
up to a constant factor. Actually, the above two lemmas are the content of
Theorem 1.2.

1.5 Main results (2)

We continue the above point of view of studying the spatial asymptotic
properties of $v$ .

Theorem 1.5 If $\rho>4+1/2$ , for any $\lambda>0$,

$s-\lim_{rarrow\infty}r^{5/2}e^{-i\sqrt{\lambda}r}v(r\cdot)=C(\lambda)\hat{S}_{0\alpha}(\lambda;\cdot,\omega)$ ,

$C(\lambda)=e^{\pi i/4}2\pi\lambda^{-1/4}(\lambda-E^{\alpha})^{-1/4}$ ,

in $L_{loc}^{2}(M)$ .

So, the scattering matrix $\hat{S}_{0\alpha}(\lambda)$ is obtained from the asymptotic be-
havior of $v$ in the same way as in the two body problem. However, it is not
easy to replace $M$ by $S^{5}$ in the above theorem, since the behavior of $v$ in a
neighborhood of $N$ is,rather complicated. What we can expect is the limit
in an averaged sense.

Let $\chi_{\beta}(x)$ be as in (1.13). We take $\rho+(t)\in C^{\infty}(R^{1})$ such that $\rho+(t)=1$

if $t>1-\epsilon,$ $\rho+(t)=0$ if $t<1-2\epsilon$ . We also take $\rho(t)\in C_{0}^{\infty}((0, \infty))$ such
that $\rho(t)=1$ near $t=1$ and $\int_{0}^{\infty}\rho(t)dt=1$ . In order to facilitate the proof,
the pair potentials are assumed to be rapidly decreasing, but the following
two theorems can of course be proved for more slowly decreasing potentials.

Theorem 1.6 Suppose that $V_{\alpha^{Z}}s$ are rapidly decreasing functions. Then

$s-\lim_{Rarrow\infty}\frac{1}{R}\int_{R^{6}}e^{-i\sqrt{\lambda}\theta\cdot x}\theta\rho\cdot\hat{x}\rho\rho+(\frac{\theta\rho}{|\theta\rho|}\cdot\frac{x\rho}{|x\rho|})\chi\rho(x)\rho(\frac{|x\rho|}{R})v(x)dx$

$=C(\lambda)\hat{S}_{0\alpha}(\lambda;\theta,\omega)$ ,
$C(\lambda)=-(4\pi)^{-1}\lambda^{-1/2}C_{0}(\lambda)^{-1}C_{\alpha}(\lambda)^{-1}$ ,

in $L^{2}(\tilde{N}_{\beta})$ , where $\tilde{N}\rho$ is a small neighborhood of $N\cap X\rho$ and $\hat{x}\rho=x_{\beta}/|x_{\beta}|$ .

In the neighborhood of the $X\rho$-plane, there are two sorts of scattering,
the 3-cluster scattering and the 2-cluster scattering. We can distinguish
between them by changing the way of taking the limit at infinity of $v$ .
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Let $u\rho\iota(x^{\beta})$ be a normalized eigenfunction of $h^{\beta}$ with eigenvalue $E_{l}^{\beta}\leq 0$ .
Let $A_{\beta l}(\lambda;\theta\rho,\omega)$ be the 2-cluster scattering amplitude associated with the
process in which, after the colloision, the pair $\beta$ takes the bound state $u\rho\iota$ .

Theorem1.7 Suppose that $V_{\alpha}s$ are rapidly decreasing functions. For a small
$\epsilon>0$, let $\psi_{\beta}(t)\in C^{\infty}(R^{1})$ be such that $\psi_{\beta}(t)=1$ if $t>\lambda-\epsilon,$ $\psi\rho(t)=0$

if $t<\lambda-2\epsilon$ . Let $\psi_{\beta}(D_{x\rho})$ be the Ps.D. $Op$ . with symbol $\psi_{\beta}(|\xi_{\beta}|^{2})$ . Fix
$a>0$ arbitrarily. Then as $r=|x_{\beta}|arrow\infty$ , we have the following asymptotic
expansion:

$\psi_{\beta}(D_{x\rho})v\simeq\sum_{l}C_{\beta l}(\lambda)u_{\beta l}(x^{\beta})r^{-1}e^{i\sqrt{\lambda-E_{l}^{\beta}}r}A_{\beta l}(\lambda;\theta\rho,\omega)$ , $\theta_{\beta}=x\rho/r$ ,

$C_{\beta l}(\lambda)=2\pi i(\lambda-E^{\alpha})^{-1/4}(\lambda-E_{l}^{\beta})^{-1/4}$,

uniformly for $|x^{\beta}|<a,$ $\theta_{\beta}\in S^{2}$ .

1.6 Some remarks

Amrein, Pearson and Sinha [1] showed that, for the N-body problem, the
total cross-section with 2-cluster initial state is finite for almost $aU$ energy
and derived its asymptotic properties in an averaged sense under the as-
sumption that the potentials decay faster than $|x^{\alpha}|^{-2}$ . See also Enss-Simon
[5]. Amrein and Sinha [2] also showed that, for the three body problem, the
total cross-section is finite for all $\lambda>0$ under the assumption that each
2-body subsystem has neither the zero $ei$genvalue nor the zero-resonance.
Ito and Tamura [11] studied the semi-classical asymptotics for the total
cross-section in distributional sense. All of these works treats the case of
the initial state of 2-clusters, while Newton [18] and Yafaev [20] studied the
structure of the S-matrix coressponding the collision process from 3-clusters
to 3-clusters. Asymptotic properties of generalized eigenfunctions of three-
body Schr\"odinger operators have been so far studied mainly by physicists.
In the work of Newton [17], Theorems 1.5 and 1.7 were derived by intuitive
arguments. If we consider the collision process of initial state of 3-clusters,
we are led to consider the generalized eigenfunction formally defined by

$\psi(x, \lambda,\theta)=e^{i\sqrt{\lambda}\theta\cdot x}-R(\lambda+i0)\sum_{\alpha}V_{\alpha}e^{;\sqrt{\lambda}\theta\cdot x}$ .

The rigorous study of this generalized eigenfunction seems to be much
harder. Nuttal [19] and Newton [17] gave precise explanations. One should
also note the work of Mercuriev [16] of the three-body scattering theory for
the Coulomb potential based on the stationary theory.

To prove the above theorems, following Isozaki-Kitada [10], we first lo-
calize the S-matrix in the phase space. An important role is played by the
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estimate of the resolvent of $H$ multiplied by Ps.D.Op’s. For that purpose
we utilize the estimate of Skibsted [15] on propagation properties in the
phase space of $e^{-itH}$ , whose method is based on the work of Sigal-Soffer
[14]. These estimates have been further refined by G\’erard [6]. The singular-
ities of $\hat{S}_{0\alpha}(\lambda)$ arise from the low-energy asymptotics of 2-body subsystems
studied by Jensen and Kato [12]. Another important tool is the spectral rep-
resentation theory developed for 2-body Schr\"odinger operators, the key idea
of which is to relate the generalized eigenfunction to the spatial symptotics
of the resolvent of Schr\"odinger operators.
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