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ABSTRACT. In this paper, the cartesian closedness of the

category Fuzz consisting of all fuzzes and all order homomor-
phisms 1is proved. Moreover, in the exponent of the category we

set up topologies of pointwise convergence and uniform

convergence.

1980 Math. Subj. Class(1985 Revision):54A40, 54B30, 54C35, 06D10.
Key words: fuzz, cartesian closed, function space, completely

distributive lattice, order homomorphism.



54

THE CARTESIAN CLOSEDNESS OF THE CATEGORY Fuzz

AND FUNCTION SPACES ON TOPOLOGICAL FUZZES

A fuzz 1is a pair (F, ") of a completely distributive
lattice F and an anti-order involution ': F—F. The category
Fuzz is consisted by all fuzzes and all mappings called order
homomorphisms (see §1 ). In a fuzz a generalized topology has
been defined and dicussed [1]1[3]. Moreover, G.J.Wang defined a
generalized topology on a completely distributive lattice. In
[8}, the author set up function spaces on the skelton. In this
paper, we hope to define function spaces in topological fuzz.
For this purpose, we have to consider which fuzz _the function
space is set up on. We find that the exponent'in the category
Fuzz is proper to set up function space. Hence, it is necessary
to prove that the category is cartesian closed.

We give needed definitions and theorems in section 1. After
an auxiliary concept is defined and studied in section 2, the
cartesian closedness of the category Fuzz is proved in section 3.
At last section we set up topologies of pointwise convergence

and uniform convergence.

§1. Preliminary

For a poset P and AcP, let lA={x€P: x<a for some
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a€EA}. For x€P, let Ix=1{x}. Dual, we have TA and 7Tx.

Definition 1.1. A fuzz [1] is a pair (F, ') of a completely
distributive 1lattice F and an anti-order involution ':F-ﬁF,'
that is , x<y if and only if y'<x' and x''=x for all x,yeF.

An order homomorphism [3] f:(F, ')—(G, ') from (F, ")
to (G, ') 1is a mapping <f:F—G such that f preserves arbitr-
ary joins and g1 preserves ', where £ l.6=F is defined
as

£ (b)=v{acF: f(a)<b}

for all DbeG.

Let Fuzz be the category of all fuzzes and all order
homomorphisms.

Let L be a complete lattice and x,ygL. If fof every
AcL, VA>y 1implies a=2x for 'some a€A, ‘then it is denoted by
x4y [6]. Let B8(y)={x€L: xdy}. It is trivial that B(0)=¢.

For a complete 1lattice L and meL, m is called
molecular [3] if m=0 and m<avb implies m<a or m<b. The

set of all molecules in L 1is denoted by M(L).

Lemma 1.2. [B8] A complete lattice L 1is a completely distribu-

tive lattice if and only if =x=vf(x) for every X€L.

Lemma 1.3. For a completely distributive lattice L, we have
(i). [6] X<y 1implies xa z«y for some 2z€L;

(i1).[{7] x=v{meM(L): m<x}=v{meM(L): m< X}.
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Lemma 1.4.[4] For every order homomorphism f, we have that

f‘l preserves arbitrary joins and arbitrary meets.

Definition 1.5. [1][3] A topological fuzz is a triple (F, ', &)
such that (F, ") 1s a fuzz and JdcF satisfies:

(1). 0,1€3;

(2). 8 1s closed for finite meets;

(3). 8§ 1is closed for arbitrary joins.

Definition 1.6. [53] A category C is called cartesian closed if

(1). € has a termial;

(2). € has finite products;

(3). € has exponents, that is, for every pair of objects
A,B, there is an object BA and a morphism ev:BAxA—ﬂB ( called
an exponent for A and B and the evalution, resepectively)
such that for every object € and morphism f:CxA—B there 1is

an unique morphism A(f):C——>BA such that f=ev*(A(f)xidA).
Other undefined terms can found in [3].

§2. Parallelisms and Products

It is very surprising that only to consider all order homo-
morphisms is not enough for studying the cartesian closedness of
the category Fuzz. Hence, we do not assume that all mappings
studied in this paper are order homomorphisms but , in fact, we

only assume that all mappings preserve arbitrary joins. For
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fuzzes F and G, let [F—G] be the set of all mappings
preserving arbitrary joins, moreover, with the pointwise order,

[F—G] 1s a complete lattice.

Definition 2.1. Let f,g€[F—G]. If for every x€F the follow-
ing formula

£ ((g(x)) )=x’
holds, then we call that f and g - are paralle and denote by

fllg, otherwise by flkg.

Proposition 2.2. Let f,g,he[F—G]. We have that
(1). if flg, then glf;

(2). if fllg and f<h, then hlg.

Proof. (1). Let x€F and xl=g'l((f(x))“). Then g(xl)s(f(x))'
and hence f(X)S(g(xl))'. It follows that xsf—l((g(xl)')sxi
because fllg. So we have g-l((f(x))')=x15x'. Thus glf.

(2). Trivial.

Proposition 2.3. If f:F—G is an order homomorphism and g:

F—G preserves arbitrary joins, then fllg if and only if f<g.

Proof. fllg «— £ 1((g(x))')<x' for all x€F
— x<(f 1 ((g(x)) ")) =f Y (g(x)) for all xeF
«— f(x)<g(x) for all XxE€F

— f<g.
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Corollary 2.4. If f and g are order homomorphisms, then flg

if and only if f=g.

B.Hutton have proved that there are arbitrary poducts in
the category Fuzz [1]. To prove the cartesian closedness of the
category, we give another forms of the products. Of course,
there exists a natural isomorphism between the two products.

Let {FS:SGS} be a family of fuzzes and sESFs the
directed product. Suppose that

sgs FS={ACSESFS: A=lA and for every x€A there exists
YE€A such that xsq Ve for every s€S}.
Then sgst is a completely distributive lattice [8]. Moreover,
for all XESESFS, we have SESBﬁgs)Esgst and all elements of
sgst are unions of some forms of sgSB(Xs)‘ Now for AESQSFS,
let
' _ ' . ! 2.2
AT =A{ éésﬁ(xs)xtgsﬁ(lt)' sESB(xs)cA}. (2.2)

Then we have

Theorem 2.5. (SQSFS, ') 1is a product of the family {Fs: s€S} in

the category Fuzz.

Proof. We only prove that ! is an involution, the other
details are omitted. (c¢f. [8][1])

Let AesgSFs and SESB(XS)CA. Then for every SESB(ys)cAf,

we have

SESB(Ys)cgés(ﬁ(xé)xtgsB(lt))
and hence
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sESB(Xs)CééS(B(yé)thsﬁ(1t))'
Thus SESB(xs)cA", it follows AcA''. Conversely, if A''cA

does not hold, then there exists x€A'’ such that SgsB(xS)¢A,
that is, there exists yEsESB(XS)\A' Hence, for any a€A, there

is s(a)e€S such.that

ys(a)ﬁas(a)’ that is, as(a)ﬁys(a)' It
. a , a
follows that there exists bs(a)eB(as(a)) such that bs(a)$
ys(a)' Now let
4 _{A{bz(a): s(a)=s}, 1if s=s(a) for some a€A;
s '1, _ if s#s(a) for all a€A.
for all s€S. Then we have dsﬁxé for every s€S. Thus
RECRLINACR PR (2.9)
‘ a
But on other hand, for every a€A we have that ds(a)gbs(a)s
as(a) and hence
SESB(dS)CA . (2.4)

(2.2), (2.3), (2.4) and SESB(XS)cA are contrary. It is
followed that A''cA.

In the next section we need the following lemmas. At first,
for an order homomorphism f:HOF—G and z€H, we define
fz:F—ﬁG as following

fz(x)=‘(6(z)x6(x)). (2.5)

Then fZE[F—ﬂG] but it is not necessarily an order homomorphism.

Lemma 2.6. If f:HOF—G is an order homomorphism, then for

every pair =z z-€H, zlﬁzz implies fz Hfz

1 1 22

Proof. For X,€F, 1let X,=f_

((le(xl))'). Then fzz(xz)s
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(le(xl))', that is,
f(B(zz)xB(xz))s(f(B(zl)xB(xl)))'.
Hence, from f being an order homomorphism, we have
B(ZZ)XB(Xz)S(B(zi)xB(l))U(B(l)XB(xi)).

Thus xzﬁxl because zzﬁzl. It is followed that fZ Hfz

2 l.
Lemma 2.7. Let f:H®F—G be an order homomorphism, Ac[F—G] and
r,z€H satisfing ref(z). If frﬁk for all k€A, then there
exists rOEH such that roﬁz' and fr ¥k for all KkeA.
0

Proof. For every keA, frﬁk implies fr(xk)ﬁk(xk) for some
xkEF. Hence, f(B(r)xB(xk))ﬁk(xk). From 'f being an order ho-
momorphism, it is followed that

£ ((k () LB (r)xB(x,)) "= (B(r")xB(1))U(B(1)xB (x) .

Thus there exists (z,,a, )€HXF such that

k’“k
zkﬁr , akSXk
but
f(ﬁ(zk)xB(ak))S(k(xk))'. (2.8)
Let r0=k@Azk' Then roﬁz because otherwise we have ZSkEAZk
and hence rSZk for some keA. Moreover (2.8) implies

fro(ak)S(k(xk))'. Thus
_l ] 1]
fro((k(xk)) )zaksxk

and hence fr fk for every Kke€A.
0

§3. The Cartesian Closedness of the Category Fuzz
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Let F, G and H be fuzzes and f:H9F—G an order

homomorphism. For z€H, set

A(f, z)={he[F—G]: thr for some ref(z)}.
Let GF be the smallest family of subsets of [F—G] which is
closed for arbitrary unions and containes all forms A{(f, z) for

any order homomorphism f:H®F—G and z€H. In GF we define

':GF—->GF as following:
‘A’=\J{B€GF: flg for all f€A and gé€B}
for AEGF.

Lemma 3.1. GF as a subfamily of the family of all subsets of

[F—G] 1is a complete lattice and for A,BEGF, A4q B if and only
if there exists a fuzz H and an order homomorphism f:H®F—G,

Z,r€H such that re€8(z) and AcA(f,r)cA(f,z)cBu

Proof. It is followed from the definitions of GF and <«

Lemma 3.2. (GF, 'Y 1is a fuzz.

Proof. By the last lemma and Lemma 1.2, it is easy to show that
GF is a completely distributive lattice. To prove that ';GF—-»GF

is an anti-order ivolution, we have only to verify B'<A’ for
F

A<B and A''=A for all A,BeG . The former 1is trivial, more-
over, it is followed from Proposition 2.2 that AcA''. Thus, the
remainer 1is to show that A''CA. Otherwise, there exists

he[F—G] such that h€éA''NA and hence there exists a fuzz H
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and r,z€H, order homomorphism f:H®F—G such that hsfr and
ret(z), frEA(f, Z)CA'’ but freA. By Lemma 1.3, there exists
rlEH such that rg rlq z. Moreover, it is followed from Lemma

2.7 that there exists zoeH such that zoﬁri and fz ¥k for all
0

k€A. Thus A(f, z,)cA’ from the definition. Furthermore, A(f,

zZ)cA'' implies that f_ kf for all z.< z and hence by Pro-
rl zl 1 0

position 2.6 we have that zlSri for all 214 Zq- It follows

that zOSri. Contrary!

Lemma 3.3. For fuzzes F,G, define ev:GFQF—eG as following

F

ev(C)=v{f(x):f€AEG and B(AYxB(x)cC}.

Then ev 1is an order homomorphism.

Proof. Clearly, ev preserves arbitrary joins. Now, we prove

ev_l preserves ', that is , for every y€G, we have

ev (v )=(ev T (x)) . (3.2)

Firstly, we prove that for all Al' AZEGF and xl,XZEF, if
B(Al)xB(xl)ceV-l(y) and B(Az)xB(xo)cev-l(y') then

B(Al)xvﬁ(xl)C(B(Az)XB(xz)) (3.3)

In fact, in case XlSXé , (3.3) is trivial. In case xlSXé,
for any fleAl, and fZEAZ’ we have that fl(xl)Sy and fz(xz)
] _l —1 v v"l ] )
<y Hence xlel (y)Sfl ((fz(xz) ). Thus fl ((fz(xz)) ) $x2,

that is, flkfz. It is followed that Aché and hence (3.3)

holds. Moreover, from the fact above proved it is followed that
ev iy ygev iy .

Secondly, we prove that ev_l(y')z(ev—l(y))'. If  AegF
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and X€F satisfy that B(A)xB(x)iev_l(y'), " then there exist

he€A and xleﬁ(x) such that h(xl)ﬁy’. Withought lost genera-

lized, we suppose that hZ =f and A(f, z)cA for some order
1

homomorphism f:H®F—G and Zgs z€H with zleﬁ(z). Thus we

have

£ (7)€ (82, )%B (x)) " =(8(2])%xB(1))U(B(1)XB (x])) .

Hence there exists (22, XZ)GHXF such that

"l ) v
B(zz)xB(xz)sf (y) but zzﬁzl, xzﬁxl. (3.4)
Let B=A(f, z,). Then Be¢A'. In fact, zzﬁzi implies that
there exists 2366(22) such that 23$21 and hence f Bule
Because f_ €B and f_ €A we have B¢A'. Hence from x.<x! it
23 z1 2771

is followed that
B(BIXB(x,)e(B(A)XB(x,))".
But on the other hand, (3.4) implies
B(B)xB(xz)CeV-l(y)-
Hence we have
B(AIXB(x)e(ev T ().
Thus
ev Ly )z(ev iy .

(3.2) 1is proved.

Lemma 3.4. For an order homomorphism f:H®—G, define A(f):
H——»GF as

A(f) (z)=A(f,2z). (3.5)
Then

(1). A(f) 1is an order homomorphism;
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(2). eV*(A(f)®idF)=f;

(3). A(f) 1is an unique order homomorphism satifying (2).

Proof. From the definition we have that A(f) preserves arbi-

F 1

trary joins. Now,suppose that A€eG , zl=A(f)°l(A), 22=A(f)— (A').

Then A(f)(zl)sA, A(f)(zz)SA'. Hence for all r.<z and r2<122

1 71
we have frlerz and hence rlsrz. Thus we have ZlSZé, that
is,
-1,., -1 ,
A(T) “(A")<(A(T) (A)) (3.8)
Conversely, if A(f)’l(A')é(A(f)-l(A))', then there exists z€H

such that zs(A(f)—l(A))' but zﬁA(f)_l(A'). Hence, A(f)(2z)

LA . It follows that there exists rl, reH such that fr €A’
1
and < rq z. Lemma 2.7 1implies that there exists zlEH such
that zlﬁr' and fZ k- for all KkeA'. Hence we have A(f,zl)
1
cA''=A,  that is, A(f)(z;)cA.  Thus, ziz(A(f)‘l(A))'zzzr,

which is contrary to ziér. Hence

(Af) " T(a)) <ace) T

(A").
(1) 1is completed.
(2). Let (z, x)EH®F. We have that

eve (A(f)2id ) (B (z)xB(x))
=ev(B(A(f) (z))xB(Xx))
=ev(B(A(f ,z))xB(x))
=v{fr(x): reg(z)}
=V{f(B(r)xB(x): reB(z)}
=f(B(z)xB(x)).

Hence, because both of eV¢(A(f)®idF) and f ©preserve arbitra-
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ry joins and the definition of product we have
ev: (A(f)eid)=f.

(3). We have only to prove that if gl,gZ:H—éGF are order
homomorphisms and eva(gl®idF)=eV*(g2®idf) then gZSgl. Let
Zy> zzeH and zleB(zz). Then gl(zl)eﬁ(gl(zz)) and hence, by
Lemma 3.1, there exists an order homomorphism h:E®F—G and

e€E, eleﬁ(e) such that gl(zl)sihel and A(h, e)Sgl(zz). So

we have that for x€F,
eve(g2®idF)(B(zl)XB(X))
=eva(gl®idF)(B(zl)XB(X))
=eV(B(gl(Zl)X6(X))

shel(x).

Thus, gz(zl)ﬁlhengl(zz). It follows that gZSgl because z. 47z

‘are arbitrary and g, Dbreserves arbitrary joinmns.
As a conclusion we have
Theorem 3.5. The category Fuzz is cartesian closed.

§84. Topologies of Pointwise Convergence

and Uniform Convergence

To study function spaces on topological fuzz, we introduce a
concept of subspaces of a topological fuzz.

Let F be a fuzz. We consider a mapping Jj:F—F which sa-

tisfies the following conditions
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(S1). j(a)<a for all a€F;

(82). j=J3=J;

(S3). j presvering arbitrary joins;

(S4). j((j(a))')=j(a') for all aE€F.
Let Fj={j(a): aéF}. Then Fj is closed with arbitrary joins
and arbitrary meets and hence 1is a completely distrbutive lat-
., C), where ac=j(a'), is a fuzz and the

J
embeding mapping i:Fj—AF is an order-homomorphism.

tice. Moreover, (F

Furthermore, if (F, 3J) is a topological fuzz, then (F

(OS]

éj), where 6j=j(6), is also topological fuzz.

Definition 4.1. If j;F—F satisfies the conditions (S1)-(S4),

then Fj is called a subfuzz of F. (Fj’ S.) is called a

J
topological subfuzz of (F, §).

On subfuzz and topological subfuzz, we will discuss in another

paper, In here, we only discuss a special subfuzz —— &a subfuzz

of GF

for topological fuzzes F and G consisting of conti-
nuous mappings.
Let (F, 8) and (G, €) ©be topological fuzzes. Define
j:GF——>GF as follows:
jA)=U{A(f.z): f:H8F—G 1is a continuous order homomorphism
and H 1is a topological fuzz, z€H and
A(f, z)cA} (4.1)

Lemma 4.2. j:GF——>GF satisfies the conditions (S1)-(S4).

Proof. (S1) and (S2) are trivial. To show (S3) we have only to
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note that A(f,z)=U{A(f,r): ref(z)} and if 'A(f,z)céésAs then
for every r€B(z), there exists s€S such that A(f, r)cAs. At
last, we prove (S4). Clearly, Jj(j(A)') =j(A') for all AEGF. To
show Jj(j(A)')<j(A') we have only to verify that for a topolo-
gical fuzz H -énd a continuous order homomorphism f:H3F—G,
z€H, 1if A(f, z)c(j(A))' then A(f, z) <A'. In fact, if A(f,
z)¢A', then there exists r€H such that ref(z) but freA‘.
By Lemma 2.7, there exists zoeH such that zosz' and fzoXk
for all keA'. Hence from the definition it is followed that
A(f, zo)cA"=A. Hence, by the definition of j, we have A(f,
z,)ci(A). Thus, from A(f, z)c(j(A))' and Lemma 2.6, we have
zosz'. Contradition!

Definition 4.3. TFor j:GF—aF

GFJ is called the fuzz of continuous mappings (between F and
G) and denoted by CGF.

defined in (4.1), the subfuzz

Definition 4.4. Let (F, 8§) and (G, €) be topological fuzzes.
For every meM(F) and closed element ¢ in (G, g), set up
C(m, ¢)=U{AeG': f(m)<c for all feA}. (4.2)
Then the topology on GF generated by
{C(m, c): méM(F) and c¢ 1is a closed in (G, €)}

as a cosubbase is called a topology of pointwise convergence.

For the topology of pointwise convergence, we can prove the

following results. The proofs of the results are similar to
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those in [8] and hence are omitted.

Theorem 4.5. Let {fO:F—+G, 0c€X} be a net consisting of order
homomorphisms and f:F—G an order homorphism. Then {lfa, gEY}

converges to {f in GF

with respect to the topology of point-
wise convergence if and only if {fo(m), 0€Z} convergens f(m)

for every meM(F).

Theorem 4.6. Let F,G,H be topological fuzzes. Then for -every
continuous order homomorphism f:H®F—G, we have A(f):H—-—)CGF

is continuous with respect to the topology of pointwise conver-

gence.

Now we define a topology of (quasi-)uniform convergence on
function space. An (quasi-)uniformity is defined by Hutton in
1977 [2].

Let G be a fuzz. A mapping g:G—G is called valu-
increase - if g(b)=b for all DbeaG. Let V(G) be the of all
valu-increase mappings from G to itself preserving arbitrary
joins. Then V(G) 1is a complete lattice with respect to point-
wise order. Let fAg be the greatest lower bounded of {f, g}
ih the lattice. It is easy that (fag)(b)<f(b)ag(b) for all beEG.
But equality is not necessary. For every geV(G) we define
g_l:G~4G as following

g_l(b)=A{cEG: g(c')<b'}. (4.3)
Then g_leV(G).
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Definition 4.7.[2] Let G ©be a fuzz, ¢=DcV(G) 1is called a
quasi-uniformity on G if

(1). For every deD and e€V(G), if d<e then e€D;

(2). If 4, e€D, then dAe€D;

(3). For every de€D, there exists e€D such that e-=ex<d.
Furthermore, if D also satisfies (4), then D 1is called an
uniformity on G:

(4). If deD, then d_,e€D.

Let F and G be fuzzes and D an (quasi-)uniformity on
G. For every deD, define a:6F—cf  as following:
a(A)=&j{BEGF: For every f€eB there exists ge€A
such that f<d-g}. (4.4)

Then aEV(GF). (Sometime d 1is denoted by (d4d)™)

Lemma 4.8. For f,ge[F—G] and dev(G), fld-g if and only if
d_l=ng.

Proof. Suppose flld:g. Let x€F and Xl=g-l

((d_;°f(x))"). Then
g(xl)S(d_l(f(x)))'=V{b': d(b")<(f(x))"}
and hence
deg(xy)=<v{d(b"): d(b")<(f(x))"}=<(f(x))".
Thus, by flld-g, we have
x<f H((d-g(x))) <k, .
That is, g ~(((d_j+f)(x))')sx’ for all xeF, i.e., gld_ f.
)

"Only if " is followed from (d_ d.

17-17
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Lemma 4.9. ~ has the following properties:
(1). daéx(dre)™;
(2). d:=d<(d-d);

(3). (d)_;2(d_)"

for d,e€V(G).

Proof. (1) and (2) are trivial.

(3). For AEGF, we have

(d_l)A(A)=U{BEGF: B satisfies the following (4.5)},

F.

(a)_l(A)=A{C€G C satifies the following (4.8)}.

To complete (3), we have only to prove that if B, CEGF satisfy,

respectively,

for every heB, there is k€A such that h<d . =k, (4.5)

1
d(cry<a’ (4.8)

then BcC. Suppose that f:H®F—G 1is an order homomorphism and

r,z€H. If ref(z) and frEC then, by Lemma 2.7. there exists

zOEH such that zoﬁz' and fz kk for all ke€C. Hence, A(f,

0
zo)cC'. By (4.8), it is followed that there exists rOEB(ZO)
such that roﬁz' and d-:fr €A'. Then fzeB and hence BcC. In
0
fact, otherwise, there exists k€A such that fzsd_lfk. It is
followed from Proposition 2.2 and Lemma 2.6 that d_lﬁkllfr .By
0
Lemma 4.8 we have klld@fr , which contradit with dofr €A' and
0 0

KEA.

Theorem 4.10. If F, G are fuzzes and D is an (quasi-)

uniformity then
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D=1{d: deD} (4.7)

is an (quasi-)uniformity.

Proof. It is immediately obtained from last lemma.

Theorem 4.11. If F 1is a topological fuzz and (G, D) 1is a
quasi-unifomity then -evolution ev: CGFQF-AG is continuous
with respect to the topology of quasi-uniform convergence on

CGF.

Proof. The proof is similar to those in [8] and is omitted.

Lemma 4.12.  If f,g:F—G are order homomorphisms and dev(G),
then f<d:g 1if and only if gsd_if.

Proof. If g<£d .:=f, then g(a)ﬁd_l(f(a)) for some a€F. That

-1
is, g(a)<a{beG: d(b')<(f(a))'}. Thus there exists be€G such
that d(b')<(f(a))' but g(a){b. Because f and g are order
homomorphisms we have f(g-l(b'))ﬁ(d*g)(g—l(b')). Therefore

f<d-g.

Theorem 4.13. Let F ©be a topological fuzz and (G, D) an
uniformity. If a net {lfo: oc€x} consisting of continuous order
homomorphisms from F into G converges to {f, where f:F—G
is an order homomorphism, with respect to the topology of uni-

R F . .
form convergence in G, then f 1s continuous.
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Proof. ©Let ¢ Dbe closed in G and peM(F). if péf_l(c),
then there exists deD such that

f(p)<d(c). (4.8)

Choose e€D such that

e-ezesd and e_j=e (4.9)

Set

A=U {BEG": f<e-h for all heB}. (4.10)

Then {f<é(A) and hence {f<A, where ( ) 1is the closure oper-
ator in a topologiéal fuzz been considering. Thus lfoﬁﬁ for

some c€X. It follows from (4.10) that

fse*fo. (4.11)
Therefore, (4.8) and (4.9) imply that fo(p)ﬁ(eee)(c). Thus
p<f_t(ele). (4.12)
From (4.9), (4.11) and Lemma 4.12 it is followed that

£t (o)<t (e (e)) <t 1 (BTN

Hence by (4.12) and the continuouity of fo we have pﬁf_l(c).

1 1

Thus f Y(c)=f Y(c), that is £~ (¢c) 1is closed.
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