ON THE CLOSED IMAGES OF A DEVELOPABLE SPACE

TAKEMI MIZOKAMI (溝上武)

ABSTRACT

We study the properties of the image of a developable space and an orthocompact developable space under a closed mapping, comparing with La \S nev spaces. Two classes $\mathcal C$ and $\mathcal C'$ are defined and their properties are given.

1980 Math. Subj. Class. 54E30

1. Introduction.

Throughout this paper, all spaces are assumed to be T_1 topological ones and mappings to be continuous and onto. The letter N always denotes natural numbers. The letter Z always denotes a convergent sequence of points of a space such that $Z = \{z_n : n \in \mathbb{N}\}$ and $Z \to p$ implies that Z converges to p as $n \to \infty$. We denote the topology of X by τ_X . We use the brief expressions HCP and TP in place of "hereditarily closure-preserving" and "interior-preserving", respectively.

As a nice generalization of metric spaces, we have a class of developable spaces, which are defined to be ones X having a sequence { $u_n : n \in \mathbb{N}$ } of open covers of X such that for each point $p \in X$, {S(p, u_n) : $n \in \mathbb{N}$ } is a local base at p in X. Untill now, the image of a metric space under a closed mapping, called a <u>Lašnev space</u>, is widely studied. But the study of the image of a developable space, briefly called the closed image of a developable space, has not been published yet. In this paper, we begin on its study, especially using the notion of pair-networks. This is our aim of this paper.

To start with, we give the meanings to the special spaces used later. A space X is called <u>semi-stratifiable</u> if there exists a function O : {closed subsets of X} \times N \rightarrow τ_X , called the <u>semi-stratification of X</u>, satisfying the following conditions:

(1) For each closed subset F of X, $F = \bigcap \{O(F, n) : n \in \mathbb{N}\}$ and $O(F, n+1) \subset O(F, n)$ for each n.

- (2) If F, G are closed subsets of X such that $F \subset G$, then $O(F, n) \subset O(G, n)$ for each n.
 - 2. The closed image of a developable space.

DEFINITION [2]. Let $P=\{(F_{\alpha},\ V_{\alpha}):\alpha\in A\}$ be a collection of ordered pairs of subsets of a space X.

P is called a <u>pair-network for X</u> if whenever $p \in U \in \tau_X$, there exists $\alpha \in A$ such that $p \in F_\alpha \subset V_\alpha \subset U$. P is called <u>discrete</u> (resp. HCP) if the family $\{F_\alpha : \alpha \in A\}$ is discrete (resp. HCP) in X. P is called σ -<u>discrete</u> (resp. σ -HCP) in X if $P = \bigcup \{P_n : n \in N\}$ with each P_n discrete (resp. HCP) in X. The other terms for P are similar.

In this paper, we assume that every F_{α} is <u>closed</u> in X, but every V_{α} is <u>not necessarily open</u> in X. Unless otherwise is stated explicitly, we assume that P has the members $\{(F_{\alpha}, V_{\alpha}) : \alpha \in A\}$ or $\{(F_{\alpha}, V_{\alpha}) : \alpha \in A_{n}, n \in N\}$.

THEOREM 1. For a Fréchet sapce X, the following are equivalent:

- (1) X has a σ -HCP pair-network P such that if $Z \to p$ $\in U \in \tau_X$, then there exists $\alpha \in A$ such that $p \in F_\alpha \subset V_\alpha \subset U$ and Z is cofinal in V_α , where Z is cofinal in V_α means $z_n \in V_\alpha$ for infinitely many n.
- (2) X has a σ -HCP pair-network P such that if $Z \to p$ $\in U \in \tau_X$, then there exists $\alpha \in A$ such that $p \in F_\alpha \subset V_\alpha \subset U$ and Z is residual in V_α , where Z is residual in V_α means $\{z_n : n \ge m\} \subset V_\alpha$ for some $m \in N$.
- (3) X has a σ -HCP pair-network P such that if Z \rightarrow p $\in U \in \tau_X \text{ and } Z \subset X \{p\}, \text{ then there exists } \alpha \in A \text{ such that } p \in F_\alpha \subset V_\alpha \subset U, F_\alpha \{p\} \subset \text{Int } V_\alpha \text{ and } Z \text{ is residual in Int } V_\alpha.$

PROOF. (3) \rightarrow (2) \rightarrow (1) is trivial. (1) \rightarrow (3): Let P be a σ -HCP pair-network satisfying the condition of (1). Without loss of generality we can assume $A_n \subset A_{n+1}$ for each $n \in \mathbb{N}$. For each $\delta \subset A_n$, $n \in \mathbb{N}$, let

 $F(\delta) = \bigcap \{F_{\alpha} : \alpha \in \delta\}, \ V(\delta) = \bigcup \{V_{\alpha} : \alpha \in \delta\}.$ Since the family of all intersections of members of a HCP family is also HCP in a Fréchet space [5, Remark 3.7], the pair-collection

$$P' = \{(F(\delta), V(\delta)): \delta \subset A_n, n \in N\}$$

is a $\sigma\text{-HCP}$ pair-network for X. We show that P' has the required properties in (3). Let Z \rightarrow p \in U \in τ_X and Z \subset X $\neg\{p\}$. Set for each n

$$\delta_n = \{\alpha \in A_n : p \in F_\alpha \subset V_\alpha \subset U\}.$$

Then $p \in F(\delta_n) \subset V(\delta_n) \subset U$ for each n.

Claim 1: $F(\delta_n) - \{p\} \subset Int \ V(\delta_n)$ for some n.

Assume not. Take a sequence $\{p_n:n\in\mathbb{N}\}$ of points such that $p_n\in F(\delta_n)-\{p\}-\mathrm{Int}\ V(\delta_n)\ \text{for each }n. \text{ Since }X \text{ is Fr\'echet, for each }n \text{ there exists a convergent sequence }Z(n) \text{ of points of }X-V(\delta_n) \text{ such that }Z(n)\to p_n. \text{ Note that }\{F(\delta_n\):n\in\mathbb{N}\} \text{ forms a decreasing local network at }p\text{ in }X. \text{ Then }p_n\to p\text{ as }n\to\infty, \text{ implying}$

$$p \in \overline{\bigcup \{Z(n) : n \in N\}}.$$

Using Fréchet-ness of X, we can take a convergent sequence Z of points of $\bigcup\{Z(n):n\in\mathbb{N}\}$ such that Z $\stackrel{\centerdot}{\to}$ p. Because

 $p_n \neq p$, $n \in N$, $Z \cap Z(n) \neq \phi$ for infinitely many n. We can take a convergent subsequence $Z' = \{z_{n(k)} : k \in N\}$ of Z such that $z_{n(k)} \in Z(n_k)$ and $k \leq n(k) < n(k+1)$, $k \in N$. By the property of P stated in (1), there exists $\alpha \in A_n$,

 $n\in N$, such that $p\in F_{\alpha}\subset V_{\alpha}\subset U$ and Z' is cofinal in V_{α} . But this is a contradiction because $V_{\alpha}\subset V(\delta_k)$ for every $k\geq n$. Hence Claim 1 is established.

Claim 2: Z is residual in Int $V(\delta_m)$ for some m.

Assume the contrary, i.e., Z is cofinal in X — Int $V(\delta_n)$ for every n. Then there exists a subset $\{k(n):n\in\mathbb{N}\}$ of N such that $\mathbf{z}_{k(n)}\in \mathbf{X}-\mathrm{Int}\ V(\delta_n)$ and $\mathbf{k}\leq \mathbf{k}(n)<\mathbf{k}(n+1)$, $n\in\mathbb{N}$. Using Fréchet-ness of X, for each n we can take a sequence $\mathbf{Z}(n)$ of points of $\mathbf{X}-\mathbf{V}(\delta_n)$ such taht $\mathbf{Z}(n) \neq \mathbf{z}_{\mathbf{k}(n)}$. Since $\mathbf{z}_{\mathbf{k}(n)} \nmid \mathbf{p}$ for each n, we can use tha same argument as above to get a contradiction, which implies the validity of Claim 2. Now, let k be the maximum of n and m in Claims 1 and 2, respectively. Since $\mathbf{F}(\delta_{\mathbf{S}}) \subset \mathbf{F}(\delta_{\mathbf{t}})$ and $\mathbf{V}(\delta_{\mathbf{t}}) \subset \mathbf{V}(\delta_{\mathbf{S}})$ for every s, t with t \leq s, and this k satisfies both claims. This completes the proof $(1) \neq (3)$.

In the sequel, we denote by $\mathcal C$ the class of all Fréchet spaces satisfying one and hence all of (1) to (3) in Theorem 1. With respect to the properties of $\mathcal C$, the following hold:

THEOREM 2. C has the following properties:

- (1) C is closed under closed mappings.
- (2) C is closed under subspaces.
- (3) {closed images of a developable space} $\subset C$.
- (4) C is not finitely productive.

All except (4) are easily seen from Theorem 1. (4) is a direct consequence of Theorem 9, stated later.

We give a characterization of developable spaces in terms of pair-networks some what different from the results of Burke [2, Theorem 2.1].

THEOREM 3. For a space X, the following are equivalent:

- (1) X is a developable space.
- (2) X is first countable and X \in C.
- (3) X is a strongly Fréchet space having a σ -locally finite pair-network P satisfying the same condition as in Theorem 1, (1).
- (4) X has a σ -locally finite pair-network P such that each V_{α} is open in X.

PROOF. As well-known, a space X is developable if and only if X has a σ -discrete pair-network P such that each V_{α} is open in X, [4]. So, (1) \rightarrow (4) \rightarrow (2) and (4) \rightarrow (3) are obvious. (2) \rightarrow (1): We shall show that

X has a σ -discrete pair-network P such that all V_{α} are open in X. Let P be a σ -HCP pair-network for X satisfying the same condition as in Theorem 1, (1). For each $n \in \mathbb{N}$, let

$$X_n = \{p \in X: \text{ ord } (p, F_n) \ge \searrow_0^T \},$$

where \mathbf{F}_n = { \mathbf{F}_α : $\alpha \in \mathbf{A}_n$ }. Since X is Fréchet and each \mathbf{F}_n is HCP in X, each \mathbf{X}_n is a discrete closed subsetof X. Let

$$X_{0n} = \{p \in X: F_{\alpha} - Int V_{\alpha} = \{p\} \text{ for some } \alpha \in A_{n}, n \in N\}.$$

Then obviously $\bigcup \{X_{0n}:n\in \mathbb{N}\}$ is a σ -discrete closed subset of X. For each n, by the method of [10] we can construct a σ -discrete family \mathcal{H}_n of closed subsets of X from

$$B_n = F_n \cup \{\{x\} : x \in X_{0n} \cup X_n \}$$

such that H_n satisfying the following: For each subfamily

 $\begin{aligned} \mathbf{B}_0 &\subset \mathbf{B}_n, \text{ if } \mathbf{p} \in \bigwedge \mathbf{B}_0 - \bigcup (\mathbf{B}_n - \mathbf{B}_0), \text{ then } \mathbf{p} \in \mathbf{H} \subset \bigwedge \mathbf{B}_0 - \bigcup (\mathbf{B}_n - \mathbf{B}_0) \\ \text{for some } \mathbf{H} \in \mathbf{H}_n. \text{ For each } \mathbf{H} \in \mathbf{H}_n, \text{ } \mathbf{n} \in \mathbf{N}, \text{ with } \mathbf{H} \cap (\mathbf{X}_{0n} \cup \mathbf{X}_n) \end{aligned}$

= ϕ , choose an open subset V(H) of X such that

$$H \subset V(H) \subset \bigcap \{Int V_{\alpha} : \alpha \in \delta\},\$$

where δ is a finite subset of \boldsymbol{A}_n such that

$$H \subset \bigcap \{F_{\alpha} : \alpha \in \delta\} - \bigcup \{F_{\alpha} : \alpha \notin A_{n} - \delta\}.$$

For each point p \in X, let $\{0_n(p):n\in\mathbb{N}\}$ be a local base at p in X. Construct the pair-collection

$$P' = \{(\{p\}, O_n(p)) : p \in X_k, k, n \in N\}$$

$$U\{(\{p\}, O_n(p)) : p \in X_{0n}, k, n \in N\}$$

$$V\{(H, V(H)) : H \in H_n', n \in N\},$$

where

$$H_n' = \{H \in H_n : H \cap (X_{0n} \cup X_n) = \emptyset\}, n \in \mathbb{N}.$$

Then it is easy to see that P' is a σ -discrete pair-network for X such that the second subset of each pair of P' is open in X, proving that X is developable.

(3) \rightarrow (2): It suffices to show that X is first countable. Let $P = \bigcup \{ P_n : n \in \mathbb{N} \}$ be a pair-network for X satisfying the same condition as in Theorem 1, (1), where each $P_n = \{ (F_\alpha, V_\alpha) : \alpha \in A_n \}$ is locally finite in X. Without loss of generality we can assume $A_n \subset A_{n+1}$, $n \in \mathbb{N}$. For each point p, $A_n(p) = \{ \alpha \in A_n : p \in F_\alpha \}$, $n \in \mathbb{N}$, is finite. For each n, set $A_n = \{ \delta \subset A_n(p) : p \in \text{Int } V(\delta) \}$,

where

$$V(\delta) = \bigcup \{V_{\alpha} : \alpha \in \delta\}, \delta \in \Delta_{n}.$$

We show that

{Int
$$V(\delta) : \delta \in \bigcup \{\Delta_n : n \in N\}$$
}

is a local base at p in X. Let p \in U \in $\tau_{X}.$ For each n, we take $\delta_{n}\subset A_{n}(p)$ such that

$$\delta_n = \{\alpha \in A_n(p) : V_\alpha \subset U\}.$$

Assume p $\mbox{\not\in}$ Int V(\$\delta_n\$) for each n. Since X is strongly Fréchet, there exists a sequence \$\{p_n:n\in N\}\$ of points of X such that \$p_n\to p\$ and \$p_n\notin V(\delta_n)\$, \$n\in N\$. By the property of \$P\$, there

exists $\alpha \in A_n$, $n \in N$, such that $p \in F_\alpha \subset V_\alpha \subset U$ and $\{p_n\}$ is cofinal in V_α . But this is a contradiction. Hence we have $p \in Int \ V(\delta_n) \subset U$ for some m.

As the coronaliaries, we have two: The former is already known [9, Cor. to Proposition 4] and the latter is known for the case when X is an Moore space [3, Corollary 1.1]. The proof of the latter is the same as that of $(2) \rightarrow (1)$.

COROLLARY 1. If a closed image of a developable space is first countable, then it is developable.

COROLLARY 2. If X is a closed image of a developable space, then $X = X_0 \cup X_1$, where X_0 is a σ -discrete closed subset and X_1 is a developable space.

The proof of $(3) \rightarrow (2)$ above assures the following theorem:

THEOREM 4. If X is a strongly Fréchet space and X \in C , then X has a $\sigma\textsc{-HCP}$ pair-network such that all V_{α} are open in X.

But we do not know whether such a space is developable.

QUESTION 1. If X is a strongly Fréchet space and X \in C, then is X developable ?

The following gives another characterization of the class $\,$ C, which is similar to that of Lašnev spaces in terms of $\sigma\text{-HCP}$ k-networks by Foged.

THEOREM 5. A space X belongs to C if and only if X is a Fréchet space which has a σ -HCP pair-network P such that if K \subset U \in τ_X with K compact in X, then there exists a finite subcollection $\{(F_\alpha, V_\alpha): \alpha \in \delta\}$ of P such that

$$K \subset \bigcup \{V_{\alpha} : \alpha \in \delta\} \subset U$$

and $K \cap F_{\alpha} \neq \phi$ for each $\alpha \in \delta$.

PROOF. If part is trivial. Only if part: Let $\mbox{\it P}$ be a $\mbox{\it \sigma-HCP}$ pair-network for X satisfying the condition of Theorem 1,

(1). Assume
$$A_n \subset A_{n+1}$$
 for each n. For each $\delta \subset A_n$, $n \in \mathbb{N}$, set
$$F(\delta) = \bigcap \{F_\alpha : \alpha \in \delta\}, \quad V(\delta) = \bigcup \{V_\alpha : \alpha \in \delta\}$$

and

$$Q = \{(F(\delta), V(\delta)) : \delta \subset A_n, n \in \mathbb{N}\}.$$

Then Q is a σ -HCP pair-network for X. We shall show that Q has the required property. Let K \subset U \in τ_X with K compact in X. For each n \in N, let

$$A_{0n} = \{ \alpha \in A_n : F_{\alpha} \cap K \neq \emptyset \text{ and } V_{\alpha} \subset U \}.$$

Then HCP-ness of $\{F_{\alpha}: \alpha \in A_{n}\}$ implies

$$\{F_{\alpha} : \alpha \in A_{0n}\} | K = \{F_{1}, F_{2}, ..., F_{k(n)}\}$$

with some $k(n) \in N$, [7, Proposition 3.7]. For each i with

 $1 \le i \le k(n)$, choose $(F(\delta_{n_i}), V(\delta_{n_i})) \in Q$ such that

$$\delta_{ni} = \{\alpha \in A_{0n} : F_{\alpha} \cap K = F_i\}.$$

Obviously $\bigcup \{V(\delta_{n_i}): 1 \le i \le k(n)\} \subset U$. Assume

$$K \leftarrow \bigcup \{V(\delta_{ni}) : 1 \le i \le k(n)\}$$

for each n. Choose a sequence $\{\textbf{p}_n: n \in \textbf{N}\}$ of points of X such that

$$p_n \in K - \bigcup \{V(\delta_{ni}) : l \le i \le k(n)\}, n \in N.$$

Since K is metrizable, $\{p_n\}$ has a convergent subsequence Z to some point $p \in K$ in X. By the property of P , there exists $\alpha_0 \in A_m$, $m \in N$, such that $p \in F_{\alpha_0} \subset V_{\alpha_0} \subset U$ and

Z is cofinal in V_{α_0} . But this is a contradiction because $V_{\alpha_0} \subset \bigcup \{V(\delta_{\text{mi}}) \,:\, 1 \,\leq\, i \,\leq\, k(m)\}\,.$

This completes the proof.

Viewing Theorem 1, (1), we can easily observe that a space X belongs to $\mathcal C$ if and only if X is a Fréchet space having a σ -HCP pair-network $\mathcal P$ such that the following conditions:

- (C1) For each $\alpha \in A$, there exists an open subset W_{α} of X such that $V_{\alpha} = F_{\alpha} \cup W_{\alpha}$.
- (C2) If $Z \to p \in U \in \tau_X$ and $Z \subset X \{p\}$, then there exists $\alpha \in A$ such that $p \in F_\alpha \subset V_\alpha \subset U$, $F_\alpha \{p\} \subset W_\alpha$ and Z is residual in W_α .

By setting one more additional condition to P, we define a class C' of spaces as follows: A space X belongs to C' if and only X is a Fréchet space having a σ-HCP pair-network P satisfying the following additional condition (IP) besides (C1) and (C2):

(IP) For each n, $\mathbf{W}_n = \{\mathbf{W}_\alpha : \alpha \in \mathbf{A}_n\}$ is an IP family of open subsets of X.

With respect to the prpoerties of $\,$ C', the following holds and that corresponds to Theorem 2 for $\,$ C.

THEOREM 6. C' has the following properties:

- (1) C' is closed under closed mappings.
- (2) C' is closed under subspaces.
- (3) A closed image of an orthocompact developable space belongs to $\ensuremath{\mathcal{C}}$ '.
 - (4) C' is not finitely productive.

PROOF. (2) is obvious and (4) is a direct consequence of Theorem 9. So, we state the proofs of (1) and (3) only. First, we show (1). Let $f: X \to Y$ be a closed mapping of X onto a space Y and let $X \in C'$. Let P be a σ -HCP pair-network for X assured by the definition of $X \in C'$. Assume $A_n \subset A_{n+1}$, $n \in \mathbb{N}$. For each $\delta \subset A_n$, $n \in \mathbb{N}$, set

$$F(\delta) = \bigcap \{f(F_{\alpha}) : \alpha \in \delta\},\$$

$$W(\delta) = Y - f(X - \bigcup \{W_{\alpha} : \alpha \in \delta\}),\$$

$$V(\delta) = F(\delta) \cup W(\delta).$$

Obviously $\{F(\delta):\delta\subset A_n\}$ is a HCP family of closed subsets and $\{W(\delta):\delta\subset A_n\}$ is an IP family of open subsets of Y. Thus, the pair-collection

$$P' = \{(F(\delta), V(\delta)) : \delta \subset A_n, n \in \mathbb{N}\}$$
 is a σ -HCP pair-network for Y satisfying (C1) and (IP). We show that P' satisfies the condition (C2) in Y. Let $Z \to y \in U \in \tau_Y$ and $Z \subset Y - \{y\}$. For each n , let
$$\delta_n = \{\alpha \subset A_n : F_\alpha \cap f^{-1}(y) \neq \emptyset \text{ and } V_\alpha \subset f^{-1}(U)\}.$$

Then obviously, without loss of generality we can assume $y\in F(\delta_n)\subset V(\delta_n)\subset U \text{ for each } n\in N.$

Claim 1: $F(\delta_n) - \{y\} \subset W(\delta_n)$ for some m.

To see it, assume the contrary. Then we can choose a point $p_n \in F(\delta_n) - \{y\} - W(\delta_n) \text{ for each } n. \text{ Since } \{F(\delta_n) : n \in \mathbb{N}\} \text{ forms a decreasing local network at y in Y, } p_n \to y \text{ as } n \to \infty \text{ in Y.}$ Using the closedness of f and Fréchet-ness of X, we can choose a sequence $\{q_{n(k)} : k \in \mathbb{N}\} \text{ of points of } X - f^{-1}(y) \text{ such that } \{q_{n(k)}\} \text{ converges to some point of } f^{-1}(y), f(q_{n(k)}) = p_{n(k)}$

and

$$\begin{split} q_{n(k)} & \notin \bigcup \{ W_{\alpha} : \alpha \in \delta_{n(k)} \} \quad \text{for each k} \\ \text{where k} & \leq n(k) \leq n(k+1), \ k \in \mathbb{N}. \ \text{By (C2) of C', there exists} \\ \alpha & \in A_n, \ n \in \mathbb{N}, \ \text{such that } \{q_{n(k)}\} \ \text{is residual in W}_{\alpha} \ \text{and} \\ \alpha & \in \delta_n. \ \text{But this is a contradiction. Hence Claim 1 is established.} \end{split}$$

By the same argument as above, we can show that Z is residual in $W(\delta_m)$ for some m. This completes the proof of (1).

Since an orthocompact developable space X has a σ -discrete pair-network P such that for each n $\{V_{\alpha}: \alpha \in A_n\}$ is an IP family of open subsets of X, obviously X \in C', which combined with (1) implies (3).

We give two lemmas used in the proof of Theorem 7.

LEMMA 1. Let X \in C'. Then for each discrete family $\{F_{\lambda} : \lambda \in \Lambda\} \text{ of closed subsets of X there exist families}$ $\{ w_{\lambda} : \lambda \in \Lambda \} \text{ of open subsets of X sayisfying the following:}$

- (1) For each λ , W_{λ} is an outer base of F_{λ} in X.
- (2) $\bigcup \{ w_{\lambda} \mid (X F_{\lambda}) : \lambda \in \Lambda \}$ is IP in X.

PROOF. For each $\lambda \in \Lambda$, there exists a sequence $\{O(\lambda, n): n \in \mathbb{N}\}$ ofopen subsets of X such that

$$F_{\lambda} = \bigcap \{O(\lambda, n) : n \in N\},$$

 $O(\lambda,\ n+1)\subset O(\lambda,\ n)\subset O(F_{\lambda},\ n)\ \cap\ (X-\bigcup\{F_{\mu}\ :\ \mu\ \ddagger\ \lambda\})\,.$

Let P be a $\sigma\text{-HCP}$ pair-network for X assured by X \in C'. Let λ \in Λ be fixed for a while. Set

$$W_n = \{W_\alpha \land O(\lambda, n) : \alpha \in A_n\}, n \in N.$$

Let { $w(\delta)$: $\delta \in \Delta(\lambda)$ } be the totality of subfamilies of

 $\bigcup \{ w_n : n \in \mathbb{N} \}$ such that

$$W(\delta) = F_{\lambda} \lor (\bigcup w (\delta))$$

is an open neighborhood of F_λ in X. We show that $\{W(\delta):\delta\in\Delta(\lambda)\}$ is an outer base of F_λ in X. Let $F_\lambda\subset 0\in\tau_\chi.$ Let

$$w_n' = \{ W \in w_n : W \subset 0 \}, n \in N,$$

 $w(\delta) = \bigcup \{ w_n' : n \in N \}.$

Then $F_{\lambda} \subset W(\delta) \subset O$. To see that $W(\delta)$ is open in X, assume the contrary. Take a point $p \in F_{\lambda}$ — Int $W(\delta)$. Since X is Fréchet, there exists a sequence Z of points of $X-W(\delta)$ such that $Z \to p$ in X. By the property of P, we can choose $\alpha \in A_n$, $n \in \mathbb{N}$, such that

$$\mathbf{p} \in \mathbf{F}_{\alpha} \subset \mathbf{V}_{\alpha} \subset \mathbf{0}, \ \mathbf{F}_{\alpha} - \{\mathbf{p}\} \subset \mathbf{W}_{\alpha}$$

and Z is residual in W_{α} . This implies also that Z is residual in $W_{\alpha} \cap O(\lambda, n)$. But this is a contradiction. From the property (IP) of P, we can easily see that (2) is satisfied for thus constructed

$$W_{\lambda} = \{W(\delta) : \delta \in \Delta(\lambda)\}, \lambda \in \Lambda.$$

This completes the proof.

A space X is called d-IP-expandable [6] if for each discrete family $\{F_{\lambda}:\lambda\in\Lambda\}$ of closed subsets and each family $\{U_{\lambda}:\lambda\in\Lambda\}$ of open subsets of X such that $F_{\lambda}\subset U_{\lambda}$, $\lambda\in\Lambda$, there exists an IP family $\{V_{\lambda}:\lambda\in\Lambda\}$ of open subsets of X such that $F_{\lambda}\subset V_{\lambda}\subset U_{\lambda}$, $\lambda\in\Lambda$.

LEMMA 2. If $X \in C'$, then X is orthocompact.

PROOF. By the lemma above, X is d-IP-expandable.

Since a submetacompact, d-IP-expandable space is orthocompact,

[6, Theorem 2.5], X is orthocompact.

From Lemmas 2 and 3, we have a characterization of orthocompact developable spaces in terms of pair-networks as follows:

THEOREM 7. For a space X, the following are equivalent:

- (1) X is an orthocompact developable space.
- (2) X is a first countable space and $X \in C$.

A space X is called d-paracompact [1] if for each open cover U of X, there exists a U-mapping of X onto a developable space. A space X is called <u>subdevelopable</u> if $\tau_{\overline{X}}$ contains a developable subtopology. With respect to the notions, we have the following:

THEOREM 8. If $X \in C'$, then X is both d-paracompact and subdevelopable.

PROOF. If X \in C', then by Lemmal X is D-expandable and hence id d-paracompact [1, Theorem 1]. Since a d-paracompact space with a G_{δ} -diagonal is subdevelopable [8, Theorem 4], X is subdevelopable.

But we do not know whether the above holds for the class $\mathcal C$.

QUESTION 2. If $X \in C$, then is X d-paracompact or subdevelopable ?

It is well-known as Heyman's result that for any non-discrete spaces X, Y, the product space $X \times Y$ being Lagnev means both X, Y are metrizable. This is true for the class \mathcal{C}' .

we state it more generally.

THEOREM 9. Let X, Y be non-discrete spaces. If $X \times Y \in C'$, then $X \times Y$ is an orthocompact developable space.

PROOF. By the virtue of Theorem 7, it suffices to show that both X, Y are first countable. Let P be a σ -HCP pair-network for X \times Y defining X \times Y \in C'. Let Z be a sequence of points of X such that Z \rightarrow x and Z \subset X—{x}. Let y be an arbitrary point of Y. We show that y has a countable local base in Y. Obviously

$$Z' = \{(z_k, y) : k \in \mathbb{N}\} \rightarrow (x, y)$$

in X × Y. Since $\{W_\alpha:\alpha\in A_n\}$, $n\in N$, is IP in X × Y by (IP), for each pair $(m,n)\in N^2$ with

$$(z_m, y) \in W_\alpha$$
 for some $\alpha \in A_n$,

there exists an open subset O(m, n) of X such that

$$(\mathbf{z_m,\ y}) \in \mathrm{O(m,\ n)} \subset \ \bigcap \{\mathbf{W_\alpha}: \ \alpha \in \mathbf{A_n} \ , \\ (\mathbf{z_m,\ y}) \in \mathbf{W_\alpha} \}.$$

Let N_0 be the totality of such pairs (m, n). Let $p: X \times Y \to Y$ be the projection. By the property of P, it is easily seen that $\{p(O(m, n)) : (m, n) \in N_0\}$ is a local base at y in Y. This completes the proof.

COROLLARY. Let X, Y be non-discrete spaces. If $X \times Y$ is the closed image of an orthocompact developable space, then $X \times Y$ is an orthocompact developable space.

But, we do not know whether Theorem 9 holds for the class \boldsymbol{c} :

QUESTION 3. For non-discrete spaces X, Y, does X \times Y imply that X \times Y is developable ?

Finally, we pose the following question about the characterization of a closed image of a developable space:

QUESTION 4. If a space X belongs to $\mathcal C$, then is X a closed image of a developable space ?

REFERENCES

- [1] H. Brandenburg, On d-paracompact spaces, Top. Appl. 20 (1985), 17-27.
- [2] D. Burke, Presevation of certain base axiom under a perfect mapping, Topology Aproc. 1(1970), 269-279.
- [3] J. Chaber, Generalizations of Lasnev theorems, Fund. Math. 119(1983), 85-91.
- [4] J.W. Green, Completion and semicompletion of Moore spaces, Pacific J. math. 57(1975), 153-165.
- Y. Kanatani, N. Sasaki and J. Nagata, New characterizations of some generalized metric spaces, Math. Japonica 30(1985), 805-820.
- [6] T. Mizokami, Expansion of discrete and closure-preserving families, Proc. Amer. math. Soc. 102(1988), 402-406.
- [7] _____, CF families and hyperspaces of compact subsets, Top. Appl. 35(1990), 75-92.
- [8] _____ , On d-paracompact, P-, σ and Σ -spaces, manuscript.

[9] _____ , On D-paracompact σ -spaces, Tsukuba J. Math. 15(1991), 425-229.

[10] F. Siwiec and J. Nagata, A note on nets and metrization, Proc. Japan Acad. 44(1968), 623-627.

Department of Mathematics

Joetsu university of Education

Joetsu, Niigata 943

Japan