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5%k
Abstract. R* is the Stone-Cech remainder of the real line. We
prove that every decomposable continuum in R* is a section of a
standard continuum. Every indecomposable continuum in R* is the

union of a family of standard continua. About the general

. . *
structures of continua in R , we have,

%

(1) Let C and D be continua 1in R . If one of them is
indecomposable, then CcD, DcC or CNnD=¢;
(2) R* is hereditarily unicoherent, i.e., any intersection of

continua in R is a continuum. Moreover, any intersection of
indecomposable continua in R 1is indecomposable;

{3 The closure of the union o0of a chain of indecomposable

. . * . . .
continua in R  is an indecomposable continuum;

E ) . . .

(4> A point x of R is not a sub cutpoint iff{ {x} is the

intersection of a maximal chain of nondegenerate indecomposable
. . *

continua in R ;
- . . . *

(5) There is no Q-points in o iff every composant of B[0,x)
-[0,»®) is the union of a strictly increasing segquence of proper
indecomposable subcontinua;

(6) The principle NCF 1is eguivalent to the statement that
B[0,»)-[0,») is the union of a strictly increasing sequence of

proper indecomposable subcontinua.

Now we know that there are 9 different continua in R*
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Continua in R

By J. P. Zhu
Introduction.

We shall investigate continua in R* in this paper. It 1is
well-known that R* is the topological sum of two indecomposable
continua B8(-«,0]-(-~,0] and B8[0,»)-[0,«) [1]. 1Indeed, we can
actually construct many continua in R* by the following method.
Let (In:nEQ} be a discrete family of nondegenerate (faithfully
indexed) closed intervals of R. For any nonprinciple ultrafilter
u on o, it is not difficult to show that the set

N {cl g(U{I_:n€A}):AEu)

B

is a continuum (see, for example, [8]). These continua in R*
are called standard continua [8]. The first systematic study of
standard continua was made by Mioduszewski in [10]. The most
important fact discovered in [10] 1is that there is a natural
partial order on every standard continuum. By this bartial
order, we can define layers and sections (See below). Layers are
indecomposable continua ([13]1 and [15]) and sections are decom-
posable continua. Using these methods, Smith [12] proved that

there are 8 different continua in R* and the author [15] proved

that infinitely many different indecomposable continua in R*
can be constiructed by adding Cohen reals.

In this paper, we shall give a representation theorem for
decomposable continua in R*. Actually, we prove that every

decomposable continua 1in R is a section of a standard con-
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tinuum. As 1its corollaries, we have (1) Every indecomposable

. . *® . . .
continuum in R is the union of a family of standard continua;

(2) Let C and D be continua in R*. If one of them is inde-
composable, then CcD, DcC or CnND=¢; (B) R* is hereditarily
unicoherent, i.e., any intersection of continua in R* is a
continuum; (%) Any intersection of indecomposable continua in

R¥ is indecomposable; and (&) The closure of the union of a

chain of indecomposable continua in R* is an indecomposable
continuum.

We can give a very simple explanation of the nonhomogeneity
of R*: Near points are sub cutpoints but never are larger
points. This method was first used in [8] with a little bit more
complicated notion. About sub cutpoints of R*, we have the
following characterization: A point x of R* is a sub cutpoint
iff {x} is not the intersection of a maximal chain of non-
degenerate indecomposable continua in R*‘ The "only if" part
was anounced by van Douwen in [41. See also Ceorollary 5.4, which
says that if we regard w* as a subspace of R*, Q-points in m*
are sub cutpoints.in a very strong sense.

We have also noticed that there is a very closed relation
between composants of 8[0,«)-[0,») and Q-points in m*. ¥We shall
prove that there is no Q-points in m* iff every composant of
B[0,»)-[0,«) is the union of a strictly increasing sequence of
proper 1indecomposable subcontinua. It is well-known that the
statement that B[0,»)-[0,~) is the unique composant of itself is

equivalent to the principle NCF(Near Coherence of Filters, See

[31). Blass proved in [2] that NCF implies that there is no
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Q-points in m*. Therefore, we have that NCF is equivalent to

that B8[0,»)-[0,«) is the union of a strictly increasing sequence
of proper indecomposable subcontinua. We would like to mention
that every proper subcontinuun of B8[0,«)-[0,®) is nowhere dense
in 8[{0,»)-[0,~) since B8[0,»)-[0,~) is indecomposable (See, for
example, [71). At the end of this paper, we shall construct an
indecomposable continuum in R* which is not contained in [12].

Hence, there are at least 9 different continua in R*.

81. Preliminaries

A continuum is a compact <connect Hausdorff space. A
continuum X is nondegenerate if |XI>1 and a subcontinuum A
of X is not proper if A€{¢,X}. A continuum is decomposable if
it is the union of two ©proper subcontinua; Otherwise, it is
indecomposable. We regard the empty set as an indecomposable
continuum.

R is the real line. The Stone-&ech compactification of a
space X is denoted by B8X and the remainder 8X-X by X*. We
shall identify B8X with the set of all ultrafilters of closed
subsets o0of X, since we only consider the case of X=R or a
subspace of R in this paper. For each open set U of X, we
let O(U)={x€BX:3Fex(FcU)}. Note that ({O(U):U is open in X} is
a base for B8X.

If e:9—>% is a function from ¢ to # and % is an

ultrafilter on ¥, then the ultrafilter {Acf:e '(A)€EYU) on F is

denoted by e(l). If (P,<) is a partial ordered set and A,BcP,
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A<B means that a<b for any (a,b)€EAXB.

We shall review some basic facts about standard continua in
R* in the rest of this section. Most of the results were proved
in {101 and [12] in somewhat different forms.

Let Q be the collection of all discrete infinite families
of nondegenerate closed intervals of R. For $€ and a non-
principle ultrafilter Y on £, we let

Mg, =N (cl R(u?) cFedly .

B

It is not difficult to show that M($,Y8) is a continuum. In

fact, M(#,Y) is a component of (Uf)* (See, for example, [81)

Definition 1.1[81. A continuunm BcR™ is standard if there 1is

£€Q and a nmonprinciple ultrafilter U on ¢ such that B=M(£,%).
For any choice function f of %, we let
fﬂ=(FCR:F is closed and- {I:f(I1)€EF}€¥Y} and

G(f,ﬂ)={fﬂ:f is a choice function of #%}.

Recall that there is a natural partial order <§ on M(£,W)

defined as follows: For any x,yeEM(¥%,%),

x<§y iff there are F€x and H€Ey such that {I€f:FNICHNI}€EU.
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It is easy to see that <§ is a partial order. Moreover, if we
restrict <§ on C(f,U), then it is a linear order ([10]1,see

also Remark 2.6). For xeM(f,U), we let
# . ¥ . . '
[x]ﬂ={yeM(§,ﬂ):y is <ﬂ-1ncomparable with X or y=x}.

[x]i is called a layer of M(#,U)(See [15]1). As a good exercise,
the reader is invited to check that [x]§={x} for any x€C(4$,1).

From now on, we shall omit the subscripts, if no confusion
will occur.

Let L&, U)={[x]:xeM(F,UW)}. It is not difficult to show
that L(%,U) is a partition of M(#,U) and the order on L(%,%)
defined by ({x1<[y] iff =x<y is a linear order. For x,yeM($,1),
let

(x,y)={zeM(F, W) (x1<{z1<Iy ]}
and

[x,yI={zeM{£,U):Ix1<lzIik[y1}.

We endow L(#,%) with the order topology and define mR:M($,U)—
L(#£,U) by mn(x)=[(x1. Since (x,y)=U{{(a,b):a,beC(#,U) and x<a<bly}
and (a,b) is obviously open in M(#,U) for any a,beC(f,U), we

have

Theorem 1.2[101. The mapping m:M$,UN)—>L($,U) defined as above

i8 continuous.

Definition 1.3. The set [x,yl is called a section of M(#,1)
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for x,yeM(#,U) and x<y. Moreover, if x,y€Q($,U) and x<y, [x,¥y]

i8 called a segment of M(#,U).

If [x,y]l is a section of M($,U), a layer of M($,U) which
is contained in [x,y]l is also called a layer of [x,y] (See also
Remark 2.6 ). The following result, which was proved by Smith
{131 and the author (151, f{follows easily from Lemma 2.7 and

Theorem 2.10.

Theorem 1.4. Every layer is an indecomposable continuun.

We collect some properties of sections.

Theorem 1.5. Let (x,vyl] be a section of the standard continuunm

M(%,4), we have:

(1) Ix,¥v] is a decomposcble continuum irreducible from x

to vy;

(2) If [x',y'] is another section of M{(F,%), [x,vInix',y']
=tx ,y 1, where [x l=max{Ix1,[x'1} and L[y JI=min{lyl,[y'3l}. If
ix ,y 1#¢, then [x,ylVUIxX',y'1=[x ,y 1, where [x 1=min{[x1,[x'1}

and [y+]=max{[y],[y']};

(3) Let Cclx,yl be a nondegenerate subcontinuum, Then the
following conditions are equivalent:

(a) C is not contained in any layer of M(%,%);



118

(b) There are Xq,y¥0€lx,y] such that xo<yg and C=[xg,¥01;
(c) C contains a cut point of Ix,y1;

(d) CNCE(&,U)#=¢;
(4) [x,y] admits an upper semicontinuous decomposition into

indecomposable subcontinua so that the decomposition sSpace is8 a

Hausdorff arec;

(5) There are many nondegenerate layers in [x,y]l and every

tayer of [x,y]l is nowhere dense in [xX,y1;

(6) [x,yInC($,Y4) is dense in I[x,y] and {{(a,b):a,belC(#,1)

and x<a<b<y} is a m-base for [x,y]:

(7) A point ce€lx,yl is a cut point iff [cl={c} and =x<c<y.
In particular, a point ceC(f,U) is a cut point of I[x,yl iff
x<ely;

(8) Any point ceC($,U)nix,y] is a P-point of [x,y1;

(9) I[x,yl is locally connected at each point in C(£,U)N

[x,y1;
(10) Ix,y] has the density of 2%,

The proofs of (1) and (5)-(10) can be found in [12], where

(10) follows from Lemma 2.1 in [12] by a standard tree argument
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(See also [5]1,[10) and [151). (2) is obvious since (L{(%,%),<) is
a linearly ordered set. (3) can be proved by (6), (7) and
Theorem 1.1. (4) follows from Theorem 1.1 and Theorem 1.4.

§2. Representations of continua in R™

¥e start with the following observation.

Lemma 2.1. If XK is a closed subset of R* and W is a neighbour-
hood of K in BR, there is an open set U of R such that KcO(U)cwW

and U is the union of a discrete family of open intervals of R.

Proof. Since K 1is compact, there are open sets V and V' of

R such thai KcO(V')ccl (V'H)cO(V)cW. Let V be the union of a

B8R
disjoint family {In:nEm} of open intervals. Then {In:InnV’¢¢ and

n€n} is discrete. So U=k}(In:InnV'¢¢ and n€w} is a desired one.

An immediate corollary of Lemma 2.1 is the following
theorem due to van Mill and Mills [81].
Theorem 2.2[81]. Every continuum 4in R* is of one of the
following forms: B(-«,0]1-(-»,01, B[0,®)-{0,») or the inter-
section of a family of standard continua.
Proof. Let C be a continuum 1in R*. Assume that C is
neither B(-«,01-(-«,0] nor B[0,®)-[0,~). By Lemma 2.1, C=1 {O(U)

:CcO(U) and clRU=U9 for some $€Q}. So C=f\((Uf)*:CC(U9)* and
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sk
#€Qy. This completes the proof since every component of (U#) is

a standard continuum.

Our goal in this section is to prove that every decompo-
sable continuum in R* is a section of a standard continuum.
Recall that a decomposable continuum is the union of two proper

subcontinua. We shall first consider the case of the union of

two standard continua.

Definition 2.3. Let M(#,U) and M(¥$,¥) be standard continua.
M, and M(F,¥) are compatible if there are Fel, Xe¥Y and a
bijection e:F—# such that

(1) e(IX<e(d) if 1<J;

(2) Ine(J)=¢ iff 1=7J;

(3) e(r=¥, i.e., V=(d&F:e 1 (d)€el}.
If e satisfies the additional condition

(4) Ice(l) for any 1€4%,

we say that M(Z,U) is identifiable in M($,¥).

Lemma 2.4. Let M(2,%) and M(%,¥) be standard continua. Then,

(a) If M$, %) is ididentifiable in M($,¥) and M(£,¥) is

identifiable in M(X,¥), then M($,U) is identifiable in M(X,¥):

(b)) M, %) is identifiable in M($,¥V) +iff M$,U) i8 a
segment of M($,Y) iff M(#,4) is a section of M(4,V) iff M(#,d)c

M(#,¥V) and M#,U) is not contained in any layer of M$,Y) iff
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M(F,HHcMF,YV) and M(F,UNC(E, V)=,

Proof. (a) is obviously from the definition. For (b), by
Theorem 1.5 (3), we need only to prove that if M(F,U)cM(#,¥) and
M, UINC(F,V)=P, then M(#,U) is identifiable in M($,¥)..Let f
be a choice function of % such that fVGM(ﬁ,ﬂ). Let F,={1€¥¢:
IcUf}, then Z,€ll. Since £, EM(F, U, F={1€F,:3Jes(f(Jr€elrel.

Since # is discrete, we have, for any I€%,

| (Jef:InI=gp} | =] (JE€F:1cIy|=1.

It is obviously that #={J€$:31€F(IcJ)} belongs to ¥ and the
bijection e:%—# defined by e(I)=J iff IcJ satisfies the

conditions (1)-(4) in Definition 2.3.

Lemma 2.5. Let M(#,%) and M($%,Y) be standard continua. Then,

(a) M#,4) and M(£,Y) are compatible ifFf M(Z,U)NM(F,V)=¢
and there is a standard continuum MX,¥) such that M#,4) and

M(#,Y) are both identifiable in MX,¥);

(b) If C(F,IHNCSF, V)=, M(F,U) and M($,Y) are compatible.

Proof. (a) is trivial. Let us prove (b). Let f and g be
choice functions of $ and #, respectively, such that fﬂ=gy.
Let A=f(F)ng(¥). 1t 1is easily to see that £ layed and

g l(a)e¥. Since ¥ and §4 are discrete, we have, for any
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Io€£f ' (A) and Jp€g™ '(A),
[{1€f 1 (A)Y:INJy=$} |<3 and |{Jeg 1(A):INI =8} |<3.

¥e enumerate A as {Xn:neo} so that xn<xn+1 for any n€w.

Let A ={(x ‘n€on) for each i<2. Then f'l(Ai)Eﬁ and

3n+i
g’l(Ai)EY for some i2. It is easily seen that the bijection
e:f'l(Ai)—»g‘l(Ai) defined by e(I)=g 'f(I) satisfies the

conditions (1)-(3) in Definition 2.3.

Remark 2.6. A standard continuum, of course, can be ezpressed
by different ($,4) and (F,Y). However, we can see from Lemma
2.5 and Lemma 2.6 that the» partial order, layers, sections,
C(#,%), compatiblity and identifiablity .do not depend on the

choice of (#,1).

Lemma 2.7, Let By and B: be standard continua with nonempty
intersection. Themn BgUB; 1is a standard continuum. Moreover, if
By-B;#¢, B, is identifiable in ByUB;. Therefore, if |BynB;|>1,

BoNB, is also a standard continuunm.

Proof. We assume that Bg-B; and B;-By are not empty. We
prove that By and B; are compatible. Our conclusions follow
from Lemma 2.5 and Lemma 2.6. Let By=M(#,U) and B;= M($,V).
Let Fo={1€$:1¢Uf} and HKy={J€F:JeUF}. Then Fo€U and Ky€V.
It is easily seen that, for any I3€%, and Jgo€#y, we have,

| {1€F,:1NnJp=#} |<2 and |{(JEXy:INIo=$)|<2. We enumerate F, as
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(In:nem} so that In<In+1 for any n€e and %, as {Jn:nem} in

+i:new}e‘ﬂ for some i1 and ¢{J :n€n}

the same way. Then {1 20+ j

2n

. _ .13
'3 for some j<1. Leﬁ ?—{12n+i' mEm(J2m+j012n+i)¢¢ vand ne€n}

- . 3 3 3
and ﬁ'{J2n+j' IE?(InJ2n+i)¢¢ and n€w}. It is easily seen that
7€l and #€¥ and the bijection e:%—¥ defined by e(I)=J iff

INJ#¢9 satisfies the conditions (1)-(3). This completes the proof.
By Theorem 2.2 , Lemma 2.7 and Theorem 1.5 (3), we have,

Corollary 2.8. Let C be a continuum in R° and B a standard
continuum. If CnB and B-C are not empty, there is a standard

continuum B such that BUCCB and B is identifiable in B.

Although we can not prove in ZFC that for any X,y€8[0,»)-
[0,#), there is a standard continuum B containing both X and
y (See,[31), the following result was proved in [161].

Lemma 2.9{16]. Let C be a continuum in R . For any x,y€C, if
U and VvV are disjoint closed neighbourhoods of x and vy, then

there is a standard continuum B such that BcC, BnU=¢ and BNY=é.

Theorem 2.10. Every decomposable subcontinuum is a section of a

standard continuun.

Proof. Let D be a decomposable continuum in R* and D=CqoUC,,
where Co and C,y are proper subcontinua of D. Let X€D-C,

and y€D-C;. Then, 1in D, there are a closed neighbourhood U
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of x and a closed neighbourhood V of y such that x€UcD-C;
and YEVCD-Cy. By Lemma 2.9, there is a standard continuum B
such that BNU=¢, BNV#$ and BcD. Hence, the sets BNCy, BNC,,
B-C, and B-Cyp are all nonempty. By Corollary 2.8, there are
standard continua By and B; such that BUCycBg, BUC;CcB; and
B 1is identifiable in both By and B;. By Lemma 2.5, there is
a standard continuum B such that By and B, are identifiable
in B. Therefore, BcDcB and B is identifiable in B. oOur

theorem follows from Theorem 1.5(3).

Note that by Theorem 2.10 every decomposable continuum in
R* has all the properties which we 1list in Theorem 1.5. Ve
would like to mention that Theorem 1.4 follows easily from Lemma

2.7 and Theorem 2.10 (lLayers are obviously continua since they

are the intersections of decreasing seqiences of segments).

Corollary 2.11, let C and D be continua of rR*. 7 one of them

is indecomposable, then CcD, DcC or CnD=¢.

Proof. Suppose that C-D, D-C and CND are all nonempty. Then
CuD is a decomposable continuum. So, CUD is a section of a
standard continuum. Assume that C is indecomposable. Then, by
Theorem 1.5(3), C is contained in a layer of CUD. But layers
are nowhere dense in any section. So CuD=D, which 1is a

contradiction.

By Theorem 2.2 and Corollary 2.11, we have,
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Corollary 2.12,. Every indecomposable continuum in Iﬁc is the
union of a family of standard continua.

83. The structures of continua in R*

The following concept is well-known in continua theory.

Definition 3.1. A space X is hereditarily unicoherent provided

that any intersection of a family of continua in X is connected.
Proposition 3.2. R is hereditarily unicoherent.

Proof. We need only +to prove that any intersection of two
continua is connected. Let C and D be continua in R* and
CnD=¢. Assume that C-D and D-C are not empty. Then, CUD is
a decomposable continuum. By Theorem 2.10, CUD is a section of
a standard continuum. By our assumptions on C and D, neither
C nor D 1is contained in a layer of CUD since every layer is
nowhere dense in CUD. The <conclusion follows from Theorem

1.5(3) and (2).

Theorem 3.3. Any interseection of a family of indecomposable

. . % . . ‘
continua in R is an indecomposable continuun.

Proof. Recall that we regard the empty set as an indecomposable

continuum. Suppose that g is a family of indecomposable
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continua in R* and Ng is decomposable. By Theorem 2.10,
there is a standard continuum B such that Ng is a section
of B. We take another standard continuum B' so that B is
identifiable in B' and B-B'#¢. For any Ceg, by Corollary
2.11, we have that CcB' or B'cC. Since C is indecomposable,
if CcB', then C 1is contained in a layer T of B' by Theorem
1.5¢(3). But B is identifiable in B'. So T is a layer of B.
This is impossible. Hence,vB'CC for any C€€. B'c/NgcB. This is
a contradiction.

We have proved that every decomposable continuum in R* is
a section of a standard continuum. It is natural to ask whether
or not every indecomposable continuum is a layer of a standard

continuum. However, the answer is no.

Corollary 3.4. If €={Ca:a<x} i8 a strictly decreasing sequense
of indecomposabie continua in R* and A is a limit ordinal,

Ng is mot a layer of any standard continuun.

The fcllowing result will be used at the end of this paper

to construct a continuum in R* which is not contained in [12].

Corollary 3.5. If € is a chain of indecomposable continua in

R*, clBR(\)@) is an indecomposable continuunm.

We conclude this section with two questions. We refer to

[12] for more information.



127

Question 3.6, Is every proper indecomposable subcontinuum of

B[0,»)-[0,») homeomorphic to a layer of a standard continuum ¢

A positive answer to the following question gives a

negative answer to Question 3.6 (See Theorem 5.9).

Question 3.7. Does every layer have the property that every

nonempty G.-set has nonempty interior °

)

§4. Sub cutpoints and nonhomogeneity of r*

Definition 4.1[81. A point of a space is called a sub cutpoint

if it is a cut point of some closed connected subspace.
The following result follows from Theorem 2.10.

Proposition 4.2, A point of R* is a sub cutpoint iff ii is a

cut point of a standard continuum.

Recall that a point XGR* is near if xeclBXD for some
closed discrete subset DcR. A point XER* is large if XGCIBRF
for any closed set FcR and u(F)<{«, where u is the Lebesgue
measure. It is easily seen that near points are sub cutpoints.

Lemmeal. =4 Propositien3 i
However, it follows from in [14]1 that if x 1is a cut

point of a standard continuum, then for any £>0, there is an

Fex such that u(F)<g. Therefore, we have,
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Proposition 4.3. Large points are not sub cutpoints.

It is obvious that sub cutpoints are topologically
invariant. So R* is not homogeneous since near points are sub
cutpoints but never are large points. This method was first
appeared in [81. But our presentation is simpler than the one
in [8]. The "if" part of the following result was announced by

van Douwen in [41].

Theorem 4.4. A point x€R™ is not a sub cutpoint iff (x) is the
intergection of a maximal chain of indecomposable nondegenerate

. . *
continua in R

Proof. Let 14 be a maximal <chain of indecomposable non-
degenerate continua in R* and Ng={x). Suppose that x is a
sub cutpoint. Then x is a cut point of a standard continuum B
by Proposition 4.2. For any ceg, CcB or BcC by corollary
2.11. It is obvious that there is a C€8 such that x€CcB. By
Theorem 1.5(3), € is a section of B, hence, decomposable. This
is a contradiction.

Assume that x is not a sub cutpoint. By Theorem 2.2, ({x}

is the intersection of a family {Ba:a<l} of standard continua.

Since x is not a cut point of Ba for any o, it follows from
Theorem 1.5(7) that there 1is a layer Ta of Ba such that
x€T, and |Ta|>1. Therefore, {X}=f\{Ta:a<A}. Since layers are

indecomposable, (Ta:a<x} is a c~chain by Corollary 2.11. Hence,
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{x} is the intersection of a maximal chain of indecomposable

. . *
nondegenerate continua in R by Zorn's Lemma.

The following question is the restatement of Question 65 in

[6]1. We refer to [51,[15]1 and [16] for more information.
Question 4.5. Is any sub cutpoint near °

A positive answer to Question 4.5 gives a positive answer

to the following question.
Question 4.6[81. Are near points topologically invariant in R¥o
§5. Q-points and composants of 8[{0,®)-[0,=)

Recall that a point pEm* is a Q-point if every finite-to-
one function from o© tc6 o is cne to one on a set in p. If
F€Q and Y is a nonprinciple ultrafilter on ¢, we say that ¥
is a Q-ultrafilter if there is a bijection L1850 such that
L{(U) is a Q-point in m*, equivalently, for any partition {fn:
n€e} of ¥ into finite subfamilies, there is #€Y such that
I?nﬁnISI for any n€w. Note that the existence of Q-points is

independent with ZFC [9].

Proposition 5.1. A point pew* is a Q-point if every finite-to-

one monotone function from o to o is one-to-one on a set in p.
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Proof . Let f:o—w be a finite-to-one function. We define a

strictly increasing sequence {ai:iew) of integers as follows:

a1=min{nem:n>f(0)+max<f'1(0)));

ooooooooooo

(=min{n€o:n>f(m)+max (£ 1 (m))+a,

ooooooooooo

for any mSai_ }

1 1

We define a function h:i:e—e by hdi)=n iff an_1<i$an. Then
h is finite-to-one and monotone. S0 there is a set X€p such
that h is one-to-one on X. We enumerate X as {xn:nem} SO0

that X <X for any n€w. Then f is one-to-one on {

X .l
n “n+l 3n+i

new} for each i<£2. Obviously, there is i£2 such that {X3n+i:

neEn} €p.

Theorem 5.2. Let ¢€Q and U be a nonprinciple ulirafilter on
f$. Then U is a Q-ultrafilter iff for dny standard continuum B,

M(#,U8)cB implies that M(#,U) is tdentifiable in B.

Proof. Assume that Y is a Q-ultrafilter. Let B=M(f,Y) be the
standard continuum containing M(f,U). It is easily seen that
there is F,€U such that UZ,cUf. For each J€f, let §J={I€§:
IcJ}. Then {ﬁJ:Je})k)({l}:VJe;(I¢J)} is a partition of ¥ into
finite sets. Since U is a Q-ultrafilter, there is Zc%; such
that F€%l and I?n}JISI for any Je€f. We define the function

e:F—4 by e(l)=J iff IcJ. It 1is easily seen that e
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satisfies the conditions (1)-(3) in Definition 2.3.

Suppose that | is not a Q-ultrafilter. Let L1580 be
the bijection such that £(I1)<i{J) i1ff 1I<J. By Proposition 5.1,
there is a finite-to-one and monotone function fio—on such
that fol is not one-to-one on any %€i. For each n€w, Let
J,=la ,b 1, where an=inf(u(e'1(f‘1(n)))) and bn=sup(U(e"‘(
£71(n)»)). Then F={J _:n€n)eQ. We define e:$—f by e(D)=
J Let ¥V=e(l). Then M(% W)cM(S,¥) but M#,Y%) is not

fol (1)~
identifiable in M($,V).

It is easily seen from Theorem 2.2 that there is no maximal
proper subcontinuum in B8([0,®»)-[0,«»). However, if we restrict to
indecomposable subcontinua, the situation is quite different. We
say that an indecomposable subcontinuum C of 'BEO,m)—{O,w) is
maximal if C is not properly contained in any proper subcon-

tinuum of B8I[0,=).

Corollary 5.3. There is a Q-point in oF iff there is a mazimal

proper indecomposable subcontinuum in B[0,»)~-[0,x).

Proof. Assume that C is a maximal proper indecomposable sub-
continuum of 8[0,»)-[0,»). By Theorem 2.2 and Theorem 1.5(3),
there is a standard continuum B such that- € is contained in
a layer of B. Let B=M($,U). We claim that U 1is a Q-ultra-
filter, of course, which gives a Q-point in m*. Suppose that #

is not a Q-ultrafilter. By Theorem 5.2, there is a standard

continuum B' such that BcB' and B 1is not identifiable in B'.
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By Lemma 2.4(b), B is contained in a layer of B'. This is a
contradiction.

On the other hand, if % is a Q-ultrafilter on % for
some J$€Q and U$cR, Then every layer of M($,U) is a maximal
proper indecomposable subcontinuum of B[0,»)-[0,«*) by Theorem

5.2.

If we regard m* as a subspace. of R*, then for any pem*,
the set {p} is a maximal indecomposable subcontinuum of B[O,»)-
*

[0,) iff p is a @-point in © . In other words, we have, see

also Theorem 1.5(7),

Corollary 5.4. Let pEm* be a Q-point in oF and C a subcon-
tinuum of B[0,»)-[0,=) such that peC. If C 1is indecomposable,
then C={p} or C=8[0,=)-[0,®); If C 1is decomposable, {p} 1is

a Layer of C.

Recall that a subset C of a continuum K is a composant
if, for some point p€C, C is the set of all points x such
that there is a proper subcontinuum of K containing both p
and X. It is well-known that composants of an indecomposable
continuum are disjoint (See, for example, [71).

Proposition 5.5. There is no Q-points in o  iff every
composant of BLO,=)~[0,=) is the union of a strictly

inereasing sequence of proper indecomposable subcontinua.
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Proof . Let C be a proper indecomposable subcontinuum of
B{0,»)-8[0,2). Then C is contained in a composant P of
B[0,©)-10,o). Let P=\)(Ca:a<l}, where (Ca:a<k} is a strictly
increasing sequence of proper indecomposable subcontinua of
BLO,»)~[0,»). Note that every composant is dense. So X must be
a limit ordinal. Hence, there is o< X such that Ca-C and
Canc are not empty. By Corollary 2.11, CcCa. Therefore, the
"if" part follows from Corcilary 5.3.

Assume that P is a composant of $[0,)-[0,») and €=
{Ca:a<1} is a strictly increasing sequence of proper indecompo-
sable subcontinua such that CaCP and P-U€#¢. We prove that
if there is no Q-points in m*, then there is a proper indecom-

posable subcontinuum € such that UgcC. Take a point x€EP-UE

and a point yeca for some 2g<Xx. Then there 1is a _proper
0

subcontinuum B of B[0,»)-[0,~) containing both x and y. By
Theorem 2.2, we can assume that B is standard. Since there is
no Q-points, by Theorem 5.2, there is a standard continuum B’
such that BcB' and B is not identifiable in B'. It follows
from Lemma 2.4 that there is a layer C of B' such that BcC.
So COCQ¢¢ for any oa20y. By Corollary 2.11, Cacﬁ for any o<x
since C-U¥%=¢ and € is increasing. So UgcC. The '"only if "

part of theorem follows from an induction.

Remark 5.6. Suppose that M#,Y) is a standard continuum and ¥
is a Q-ultrafilter. Let D=U {C(F, V) ML, U)cM(F,V>). For any

X,yY€D, we define
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<y iff IMS, V) (x,yeEM(4,V) and x<$y).
x<y is well-defined by Theorem 5.2 and Lemma 2.5. In fact,
(D,<) is a limnearly ordered set. D 1is dense in R* since D is
dense in a composant of R® by Lemma 2.7 and Theorem [1.5(6).
Although the subspace topology and the order topology are
coincident on each interval of (D,<), they are different on D.
About the ezistence of orderable dense subspace of R*, we refer
to [14].

It is well-known that CH implies that 8[0,»)-[0,») has 2°
many composants [11] and NCF is equivalent to that 8[0,x)-[0,«)
is the unique composant of itself (See [3]). Blass [2] proved

%

that NCF implies that there is no Q-points in ® . Therefore, we

have

-

Corollary 5.7. NCF is equivalent to that 8[0,«)-[0,®) i3 a

union of a strictly increasing sequence of proper indecomposable

subcontinua.

¥e shall in conclusion construct an indecomposable con-

tinuum in R*, which is not contained in [S11].

Lemma 5.8. Let n:o—w be the monotone function such that
In"'(n)l=n. Then there is a sequence {p :n€w} of mon Q-points

such that n(pn)=pn+1.

Proof. Let {xn,ng+1} be such that X =o and n"+1:xn—+xn

ne€w n n +1
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is a copy of 7 for any n€w. Let n:=nm ° L ..o
m>n. For each n€w, we let

1

?n={ACXn:316Xn+1Vj>i(|(n2+ L -alsy.

It is easy to check that for any ne€o,

- m,-1 .
ﬁn—?nk}{(nn) (A): AG?m and m>n}

has finite intersection property. Moreover, £m={n:(A):A€%n} for

any m>n. Let pOEm* be such that 20Cp0. Let »p nn+1(pn) for

n+1= n
new. It is easily seen that mn:0—w witnesses that pn is not

a Q-point since ?nCpn. Therefore, {pn:nem} is the desired one.

Theorem 5.89. There is an indecomposable subconiinuum C of
810,*)-{0,=) such that there is a nonemply Ga—sei of C which
has empty 1interior and 1is the 1intersectiion of countablv many

open dense sets cof C.

Proof. Let p em* and m:e—® as in Lemma 5.8. We take fOEQ

n
and enumerate # as {IO:nem} so that IO<I0 for any n€w. Let
0 n n n+l
0_..0 .0 . .. . _.0
In—[an,bn] for any n€o. We define Lo.w—*fo by Lo(n)—ln and
ﬂO=LO(pO). For each ne€w, let k(n)=min(n~'(n)) and 1(n)=
max(n !(n)). Inductively, We define fieQ, Li:m—afi and ﬂi
from £. s L. and 4, as follows:
i-1 i-1 i-1
i_ i i i_i-1 i_i-1 |
In-[an,bn], where an'ak(n) and bn_bl(n)’

—c7l, .
}i—{ln.nem},
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zi:m—*ﬁi by Li(n)zla ; and
ﬂi=Li(pi).

It is easily seen that M(fo,ﬂo)cM(fl,ﬂl)c...cM(ﬁn,ﬂn)c...
and M(fn,ﬂn) is not identifiable in M(}n+1’ﬂn+1)’ By lemma
2.4, M(ﬁn,ﬂn) is contained in a layer Tn -of M(}h+1’ﬂn+1)'
Therefore, {Tn:new} is a strictly increasing sequence of
indecomposable subcontinua in R*. By Corollary 3.5, C=CIBR(U
{Tn:nem}) is an indecomposable continuum in R*. It is well-
known that every proper subcontinuum of an indecomposable con-
tinuum is nowhere dense [7]1. So Tn is nowhere dense in C.
Let G=(\{C—Tn:n6w}. Then G is a non-empty Gs—set with empty

interior since \){Tn:new} is dense in C.

Smith showed in [12] that 8[0,«)-{0,») has 8 different
subcontinua, among them six are decomposable. Other two are
the degenerate continuum and the indecomposable continuum which
is a Stone-Cech remainder of a locally compact, ¢-compact and
non-compact space, therefore, has the property that every

nonempty Gé—set has nonempty interior. By Theorem 5.7, we have

Corollary 5.10. There are at least 9 different continua in rR*.
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