SOME ALGEBRAIC PROPERTIES OF SEMICODES

H. J. Shyr and F. K. Tu

1 Introduction

Let X^* be the free monoid generated by a finite alphabet X, where $|X| \geq 2$. Every element of X^* is called a word and every subset of X^* is called a language. The empty word is denoted by 1 and let $X^+ = X^* \setminus \{1\}$. For any languages A and B the catenation of A and B is the set $AB = \{xy \mid x \in A, y \in B\}$ and A^+ is the set $A^+ = A \cup A^2 \cup A^3 \cup \cdots$. We let $A^{(n)} = \{u^n \mid u \in A\}$. Clearly, $A^{(n)} \subseteq A^n$. A language $A \subseteq X^+$ is a code if

$$x_1x_2\cdots x_n=y_1y_2\cdots y_m\,,\,x_i,y_j\in A,$$
 $i=1,2,\cdots n,\,\,j=1,2,\cdots m,\, ext{implies }n=m ext{ and }x_i=y_i\,\,i=1,2,\cdots ,n.$

In this work we are interested in a biger class of languages which contains properly the class of all codes. The definition of a code A is that every word in X^+ has a unique representation over the set A. Our idea of semicode now is that every word in X^+ has more than two representation over A can happen only each side has equal number of words from A. Thus we give the following definition.

We call a language $A \subseteq X^+$ a semicode if

$$x_1x_2\cdots x_n=y_1y_2\cdots y_m, \ x_i,y_j\in A,$$

$$i = 1, 2, \dots, n, j = 1, 2, \dots, m$$
, implies $n = m$.

By the definition it is clear that every code is a semicode. It is immediate that a nonempty subset of a semicode is a semicode. We will see later that there are many semicodes which are not codes. The purpose of this work is a study of some algebraic properties of semicodes.

2 Elementary algebraic properties of semicodes

First we present of the following:

Proposition 1 Let $A \subseteq X^+$. Then A is a semicode if and only if $A^p \cap A^q = \emptyset$ for all $p, q \ge 1, p \ne q$.

Proposition 2 Let $A \subseteq X^+$. Then A is a semicode if and only if A^n is a semicode for every $n \ge 2$.

We are now able to satate the following:

Proposition 3 Let $A \subseteq X^+$. Then the following are equivalent:

- (1) A is a semicode;
- (2) $A^p \cap A^q = \emptyset$, for all $p \neq q, p, q \geq 1$.;
- (3) For some $n \geq 2$, A^n is a semicode;
- (4) For every $n \geq 2$, A^n is a semicode;
- (5) $A^+ = A \cup A^2 \cup A^3 \cup \cdots$ is a disjoint union.

Since $A^{(n)}$ is a subset of A^n and a subset of a semicode is a semicode, we have

Corollary 4 If A is a semicode, then for every $n \geq 2$, $A^{(n)}$ is a semicode.

Consider the language $A = \{ab, ab^2 \, aba, a^2 \, b, bab\}$. Clearly, $A^2 \cap A = \emptyset$ and $A^3 \cap A = \emptyset$. Since

$$(ab^2aba)(ab) = (ab)(bab)(a^2b)$$

The language A is not a semicode. This indicate that conditions $A^2 \cap A = \emptyset$ and $A^3 \cap A = \emptyset$ may not imply that A is a semicode.

There exists a language A such that $A^{(n)}$ is a semicode for every $n \geq 2$ but A is not a semicode. The following is an example. Let $A = \{a, ab, b\}$. Clearly A is a not semicode, while for every $n \geq 2$, $A^{(n)}$ is a semicode.

If A is a code and $n \geq 2$, then A^n is a code. Thus for any code A, A^n is a semicode for every $n \geq 2$.

For any language $A \subseteq X^+$, let $\sqrt{A} = \{f | f \in Q, f^n \in A \text{ for some } n \geq 1\}$. The language A a semicode may not implies \sqrt{A} a semicode. The following is an example.

The language $A = \{a^2, aba, b^2\}$ is a semicode, while $\sqrt{A} = \{a, aba, b\}$ is not.

For the two element language we have

Proposition 5 Let $u \neq v \in X^+$. Then $\{u,v\}$ is a semicode if and only if $\{u,v\}$ is a code.

Proposition 6 Let $A \subseteq X^+$ be semicode. Then $|A \cap f^+| \leq 1$ for all $f \in Q$.

By a 2-code we shall mean a language $A \subseteq X^+$ such that every two elements from A forms a code.

Corollary 7 Every semicode A is a 2-code.

The relation \leq_c define on X^* as $u \leq_c v \iff u = xv = vx$ for some $x \in X^*$ is a partial order. By an independent set we shall mean that every two elements from the set is incomparable with respect the order $\leq_c . \leq_c$ independent sets are the 2 codes. (see [3]).

Corollary 8 Let $A \subseteq X^+$ be a semicode. Then A is an independent set with respect to the order \leq_c .

The above corollary tells us that the family of all semicodes is a subfamily of all \leq_c -independent sets (or all anti-commutative languages).

A word $w \in X^+$ is said to be *balanced* if there is a positive integer $k \geq 1$ such that $w_a = k$ for all $a \in X$. Here w_a means the number of letter a occurs in the word w (see [3]).

Let $H = \{w \in X^* | w \text{ is balanced } \}$. Any subset of H is called a balanced language.

Proposition 9 If A is a balanced language and $A \subseteq X^m$ for some $m \ge 2$, then for any $u \notin H$ (i.e., u is not balanced), the language $A \cup uA$ is a semicode.

Since every nonempty subset of a semicode is a semicode, we have the following corollary:

Corollary 10 If A is a balanced language and $A \subseteq X^m$ for some $m \ge 2$, then for $u \notin H$, the set $A \cup uA \cup Au$ is a semicode.

Corollary 11 If A is a balanced language and $A \subseteq X^m$ for some $m \ge 2$, $u \notin H$, then $A \cup \{u\}$ is a semicode.

It has been defined (see [3]) the partial orders \leq_p , \leq_s on X^* as follows:

for $u,v\in X^*$, $u\leq_p v$ if v=ux for some $x\in X^*$.

and

for $u, v \in X^*$, $u \leq_s v$ if v = xu for some $x \in X^*$.

A language $A \subseteq X^*$ is \leq_p -independent if the following condition hold: for any $u, v \in A$, $u \leq_p v$ implies that u = v.

A language $A \subseteq X^*$ is \leq_s -independent if the following condition hold: for any $u, v \in A$, $u \leq_s v$ implies that u = v.

Now for a language $A \subseteq X^+$ we define \underline{A} and $\stackrel{A}{\sim}$ to be the sets

$$\underline{A} = \{ v \in A | \ w \leq_p v \Rightarrow w = v \text{ for all } w \in A \};$$

$$\stackrel{A}{\sim} = \{ v \in A | \ w \leq_s v \Rightarrow w = v \text{ for all } w \in A \}.$$

That is \underline{A} is the set of all minimal elements with respect to the partial order \leq_p in A.

For any language $A \subseteq X^+$, \underline{A} is always a prefix code. Similarly $\stackrel{A}{\sim}$ is the set of all minimal elements with respect to the partial order \leq_s in A and $\stackrel{A}{\sim}$ is always a suffix code. For any $v \in \underline{A}$, we let

$$\bar{v} = \{ w \in A | v \leq_p w \}.$$

Also for any $v \in \stackrel{A}{\sim}$, we let

$$\tilde{v} = \{w \in A | v \leq_s w\}.$$

It is clear that for any $u \neq v \in \underline{A}$,

$$ar{u} \cap ar{v} = \emptyset \ \ ext{and} \ \ A = \bigcup_{v \in \underline{A}} ar{v}.$$

Also it is clear that for any $u \neq v \in \stackrel{A}{\sim}$,

$$\tilde{u} \cap \tilde{v} = \emptyset$$
 and $A = \bigcup_{v \in \hat{\mathcal{A}}} \tilde{v}$.

For any language $A \subseteq X^+$, by $A^{-1}A$ and AA^{-1} we shall mean the sets

$$A^{-1}A = \{x \in X^+ \mid w, wx \in A\}; \ AA^{-1} = \{x \in X^+ \mid w, xw \in A\}.$$

Remark: We note that if A is a semicode, then $A^{-1}A \cap A^p = \emptyset$ and $AA^{-1} \cap A^q = \emptyset$ for all $q, p \ge 1$. But the condition may not implies that A is a semicode as we can see from the following example.

Let $A=\{ab,abbaba,aab,bab\}$. Then $A^{-1}A=\{baba\}$ and $AA^{-1}=\{a,b\}$. Clearly $(A^{-1}A)\cap A^p=\emptyset$ and $(AA^{-1})\cap A^q=\emptyset$ for all $q,p\geq 1$, while

$$(abbaba)(ab) = (ab)(bab)(aab)$$

and hence A is not a semicode.

Proposition 12 Let $A \subseteq X^+$. Then the following are equivalent:

(1)
$$fA \cap A = \emptyset$$
 for some $f \in A$

- (2) $Af \cap A = \emptyset$ for some $f \in A$
- (3) $A^{-1}A \cap A = \emptyset$.
- (4) $AA^{-1} \cap A = \emptyset$.

Proposition 13 Let $A, B \subseteq X^+$. Then the following are true:

(1) If
$$\underline{A} \cap \underline{B} = \emptyset$$
 and $\underline{A} \cup \underline{B}$ is a prefix code, then $fA^+ \cap A^+ = \emptyset$ for all $f \in B$.

(2) If
$$\stackrel{A}{\sim} \cap \stackrel{B}{\sim} = \emptyset$$
 and $\stackrel{A}{\sim} \cup \stackrel{B}{\sim}$ is a suffix code, then $A^+ f \cap A^+ = \emptyset$ for all $f \in B$.

For a language $A \subseteq X^+$, define $\sigma(A)$ and $\sigma'(A)$ as following:

$$\sigma(A) = \{ f \in X^+ | A^n f \cap A \neq \emptyset, \text{ for some } n \geq 1 \text{ and } f \notin AX^* \};$$

$$\sigma'(A) = \{ f \in X^+ | fA^n \cap A \neq \emptyset, \text{ for some } n \geq 1 \text{ and } f \notin X^*A \}.$$

It is clear that $A \cap \sigma(A) = \emptyset$ and $A \cap \sigma'(A) = \emptyset$.

Proposition 14 Let $A \subseteq X^+$. Then the following are equivalent:

- (1) A is a code.
- (2) $fA^+ \cap A^+ = \emptyset$ for all $f \in (A^{-1}A)$.
- (3) $A^+ f \cap A^+ = \emptyset$ for all $f \in (AA^{-1})$.
- (4) $fA^+ \cap A^+ = \emptyset$ for all $f \in \sigma(A)$.
- (5) $A^+ f \cap A^+ = \emptyset$ for all $f \in \sigma'(A)$.

Corollary 15 Let $A \subseteq X^+$ be a semicode. If A satisfied one of the following conditions, then A is a code.

- (1) $\underline{A} \cup \underline{(A^{-1}A)}$ is a prefix code.
- $(2)^{\stackrel{A}{\sim}} \cup {}^{(AA^{-1})}$ is a suffix code.

Proposition 16 Let $A \subseteq X^+$ be a semicode. If A satisfied one of the following conditions, then A is a code.

- (1) $\underline{A} \cup \underline{\sigma(A)}$ is a prefix code.
- (2) $\stackrel{A}{\sim} \cap \stackrel{\sigma'(A)}{\sim}$ is a suffix code.

Remarks:

1. The converse of the above proposition is not true. This can be seen from the following example.

Let $A = \{a, a^2\}$. Then $\sigma(A) = \sigma'(A) = \emptyset$ and we have $\underline{A} \cup \underline{\sigma(A)} = \{a\} = \stackrel{A}{\sim} \cap \stackrel{\sigma'(A)}{\sim}$ is a bifix code but A is not even a semicode.

2. If $\underline{A} \cup \underline{\sigma(A)}$ is not a prefix code, then there exists some $u, v \in \underline{A} \cup \underline{\sigma(A)}$ with $u <_p v$. By defintion of $\sigma(A)$, we must have $v \in \underline{A}$ and $u \in \sigma(A)$.

3. $A^{-1}A \not\subseteq \sigma(A)$ and $\sigma(A) \not\subseteq A^{-1}A$. Similarly $AA^{-1} \not\subseteq \sigma'(A)$ and $\sigma'(A) \not\subseteq AA^{-1}$.

For example: Let $A = \{ab, ba, abbabba\}$. Then we have $A^{-1}A = \{babba\}$, $\sigma(A) = \{bba\}$ and $AA^{-1} = \{abbab\}$, $\sigma'(A) = \{abb\}$.

Proposition 17 If A is a code, then the following are true:

- (1) $(A^{-1}A) \cap (AA^{-1}) = \emptyset$.
- (2) $\sigma(A) \cap \sigma'(A) = \emptyset$.

Remark. The converse of the above proposition is not true. For example: Let $A = \{ab, abbaba, aab, bab\}$. Then $(A^{-1}A) = \{baba\}$, $(AA^{-1}) = \{a, b\}$ and we have $(A^{-1}A) \cap (AA^{-1}) = \emptyset$ but A is not even a semicode as we can see from the fact that (abbaba)(bab) = (ab)(bab)(ab)(ab).

Proposition 18 Let $A \subseteq X^+$. Then the following are equivalent:

- (1) $(A^{-1}A) \cap (AA^{-1}) = \emptyset$.
- (2) $(A^{-1}A)A \cap A = \emptyset$.
- (3) $A(AA^{-1}) \cap A = \emptyset$.

Proposition 19 If $A \subset X^+$ is a semicode, then the following are true:

- (1) $(A^{-1}A)A \cap A^n = \emptyset$ for all $n \geq 2$.
- (2) $A(AA^{-1}) \cap A^n = \emptyset$ for all $n \geq 2$.
- (3) $(A^{-1}A)A(AA^{-1}) \cap A^n = \emptyset$ for all $n \ge 2$.

Proposition 20 Let A be a semicode. If $A \cap A^n f \neq \emptyset$ for some $f \in X^+ \setminus A$, $n \geq 1$, then $fA^i \cap A^j = \emptyset$ for all $i, j \geq 1$ and $i \neq (n-1) + j$.

3 Mappings preserving Semicodes

A mapping $h: X^* \to X^*$ is a homomorphism if h(xy) = h(x)h(y), for all $x, y \in X^*$. h is said to be injective if h(x) = h(y) implies x = y, i.e., h is one to one.

We say that the homomorphism preserve semicodes if for every semicode A, h(A) is a semicode. We have the following characterization of semicode preserving homomorphisms.

Proposition 21 Let $h: X^* \to X^*$ be a homomorphism. Then the following are equivalent:

- (1) h is injective.
- (2) h is code preserving.
- (3) h is semicode preserving.

REFERENCE

- [1] M. Lothaire, Combinatorics on Words, Addison-Wesley Publi. co., Reading, Mass., 1983.
- [2] R. C. Lyndon and M. P. Schützenberger, The Equation $a^M = b^N c^P$ in a Free Group, Michgan Math. J. 9 (1962) 289-298.
- [3] H. J. Shyr, Free monoids and languages. Lecture Notes, Institute of Applied Mathematics, National Chung-Hsing University, Taichung, Taiwan, 1991

Institute of Applied Mathematics National Chung-Hsing University Taichung, Taiwan