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The Self-Validating Numerical Method
–A New Tool for Computer Assisted Proofs of Nonlinear Problems–

Shin’ichi OISHI
School of Science and Engineering, Waseda University

Summary

The purpoSe Of the preSent paper iS tO reVieWa State Of the art Of nonlinear analySiS
with the self-validating numerical method. The self-validating numerics based method provides
a tool for performing computer assisted proofs of nonlinear problems by taking the effect of
rounding errors in numerical computations rigorously into account. First, Kantorovich’s ap-
proach of a posteriori error estimation method is surveyed, which is based on his convergence
theorem of Newton’s method. Then, Urabe’s appcoach for computer assisted existence proofs
is likewise discussed. Based on his convergence theorem of the simplified Newton method, he
treated practical nonlinear differential equations such as the Van der Pol equation and the
Duffing equation, and proved the existence of their periodic and quasi-periodic solutions by
the self-validating numerics. An approach of the author for generalization and abstraction of
Urabe’s method are also discribed to more general funcional equations. Furthermore, methods
for rigorous estimation $\gamma f$ rounding errors are surveyed. Interval analytic methods are dis-
cussed. Then an approach of the author which uses rational arithmetic is reviewed. Finally,
approaches for computer assisted proofs of nonlinear problems are surveyed, which are based
on the self-validating numerics.

1 Introduction

Recent development of soliton theory (see, for example, Ref.[1]) reveals that exact
analysis of nonlinear problems allows us to achieve a through understanding of nonlinear phe-
nomena. In fact, soliton theory provides us a deep insight into a miraculous world of completely
integrable nonlinear systems. Namely, we can write down exact solutions for many soliton
equations. Such an exact solution delineates various interesting properties of solitons. One
view of soliton theory involves nonlinear Fourier analysis[2]. In general, a soliton equation has
a well-organized underlying algebraic structure related, for example, to infinite dimensional Lie
algebras [1].

Although the number of exactly solvable interesting soliton equations exceeds one
hundred and soliton equations are scattered in various fields, there remain many more nonlinear
equations, which are interest but cannot be solved by the soliton theory. Thus, tools are desired
for the exact analysis of such nonlinear equations, Since such equations have, in general, poor
algebraic structures, we must use topological methods such as functional analysis combined with
algebraic analysis. This is the philosophy of Poincar\’e. Moreover, in order to obtain a concrete
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result, we must also use a computer as an assistant. Thus, a kind of algorithmic functional
analysis is needed in this area.

Fortunately, it has recently become clear that computer-assisted proofs of various
kinds of nonlinear problems can be performed by validating the accuracy of the numerical
$cdculations[3]-[8]$ . Here, the concept “validating the accuracy of the numerical calculations”
means that it is necessary to consider the effect of rounding errors of numerical computations.
A key role in computer-assisted proofs using self-validating numerics is played by the Newton
method. The truly pioneering work of Kantorovich$[9, 10]$ shows that by the numerical proof
the sufficient conditions for the convergence of the Newton method, proofs of the existence and
the local uniqueness of solutions for a wide class of nonlinear functional equations can be done
by computer. However, since exact analysis of rounding errors of numerical calculations was
considered to be extremely difficult, such an approach was thought to be too restrictive. Recent
advances in the study of machine interval analysis break through these difficulties and show
that with reasonable effort, one can completely remove the effects of rounding errors. In fact,
recently, several programming languages which support machine interval analysis have been
developed such as FORTRAN-SC, ACRITH-XSC, PASCAL-(X)SC, and ACRIMOTH, and
many computer-assisted proofs of nonlinear problems have been conducted with self-validating
numerics $[3]-[8],$ $[11]-[16]$ .

The purpose of the present paper is to review assess the current state of research in
computer-assisted proofs for nonlinear problems using the self-validating numerics.

2 The Newton Method and Kantorovich’s Convergence The-
orem

Since, in computer assisted proofs using self-validating numerics, the Newton method
plays a fundamentally important role, this paper begins with a review of the Newton method.
For theoretical backgro $nd$ , see, for example Ref.[10] and for historical remarks, see Refs. $[18]-$

[20].
Let $f$ be a continuously differentiable map from an open set $B$ of a Banach space $X$

into another B-space $Y$ . We are concerned with the problem of finding a zero of $f$ :

$f(x)=0$ . (1)

For present purposes, we take any element $x_{0}\in B$ . If $f(x_{0})\neq 0,$ $x_{0}$ should be updated by

$x_{1}=x_{0}+\Delta x$ . (2)

Substituting this into the r.h. $s$ of Eq.(l), we have

$f(x)=f(x_{0})+f’(x_{0})\Delta x+o(\triangle x)$ , (3)

where $o(\Delta x)$ is a higher-order infinitesmal of $\triangle x$ . Thus by approximating $f(x)$ by $f(x_{0})+$

$f’(x_{0})\Delta x$ , we have
$f(x_{0})+f’(x_{0})\triangle x=0$ , (4)
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which yields
$x_{1}=x_{0}-[f’(x_{0})]^{-1}f(x_{0})$ , (5)

provided that $[f’(x_{0})]^{-1}$ exists and $x_{1}$ remains inside of $B$ . By repeating this process, we have
the recursion formula:

$x_{n+1}=x_{n}-[f’(x_{n})]^{-1}f(x_{n})$ . (6)

This process of forming the sequence $\{x_{n}\}$ is called the Newton method.
If the operator $[f’(x_{n})]^{-1}$ is approximated by a linear operator $F^{-1}$ , then the modified

Newton method is obtained, in which a sequence is calculated by the formula:

$x_{n+1}=x_{n}-F^{-1}f(x_{n})$ . (7)

The (modified) Newton method is known to be very powerful in solving nonlinear equations[10].
In order to demonstrate this efficacy with nonlinear equations, it is useful to consider examples.
For this purpose, we consider the following simple problem of obtaining the square root of a
positive number:

Example 2.1 (The Newton Method for Obtaining a Square Root) Let us consider the
problem of obtaining the square root of a positive rational number $c$ . Since if $c=4^{m}a$ then
$\sqrt{c}=2^{m}\sqrt{a}$, we may assume that $\frac{1}{4}<a<1$ and seek a value for $\sqrt{a}$ . To obtain $\sqrt{a}$, we
consider to solve

$f(x)=x^{2}-a=0$ . (8)

In this case, Eq.(6) becomes as

$x_{n+1}=x_{n}- \frac{x_{n}^{2}-a}{2x_{n}}=\frac{1}{2}(x_{n}+\frac{a}{x_{n}})$ . (9)

We begin this iteration from $x_{0}=1$ . It is easily seen that $x_{n}$ makes a monotonically decreasing
sequence. Moreover it is easily found that if $y_{n}$ is a sequence generated by

$y_{n+1}= \frac{1}{2}(y_{n}+\frac{b}{y_{n}})$ , $y_{0}=1$ (10)

for $\frac{1}{4}\leq b<a<1$ , then $|\sqrt{a}-x_{n}|<|\sqrt{b}-y_{n}|$ holds true. In this case, the sequence $y_{n}$ is said
to majorize the sequence $x_{n}$ . Thus for any $a \in(\frac{1}{4},1),$ $|\sqrt{a}-x_{n}|<|\sqrt{\frac{1}{4}}-t_{n}|$ holds true. Here,
$t_{n}$ is a sequence obtained by Eq.(10) with $b= \frac{1}{4}$ The first few $t_{n}’ s$ are given by

$t_{0}$ $=$ 1,

$t_{1}$ $=$ $\frac{5}{8}$

$t_{2}$ $=$ $\frac{41}{80}$

$t_{3}$ $=$ $\frac{3281}{6560}$

$t_{4}$ $=$ $\frac{21523361}{43046720}$

$t_{5}$ $=$ $\frac{926510094425921}{1853020188851840}$

$t_{6}$ $=$ $\frac{1716814910146256242328924544641}{3433683820292512484657849089280}$

(11)
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From this we can conjecture that if we let $t_{n}= \frac{s}{r_{n}}$ , $s_{n}$ and $r_{n}$ being mutually prime integers,
$r_{n}=2(s_{n}-1)$ . In fact, a computer experiment shows that this relation holds for at least $n\leq 12$

and by mathematical induction, we have

$t_{n+1}= \frac{2s_{n}(s_{n}-1)+1}{4s_{n}(s_{n}-1)}$ $s_{1}=5$ . (12)

Thus we have proven that $t_{n}$ has the form $t_{n}= \frac{s_{n}}{2(s_{\mathfrak{n}}-1)}$ and $s_{n}$ is generated by

$s_{\hslash+\iota}=2s_{n}(s_{n}-1)+1$ , $s_{1}=5$ . (13)

This implies that

$| \sqrt{\frac{1}{4}}-t_{n}|=\frac{1}{2(s_{n}-1)}=\delta_{n}$ . (14)

Finally we have $|\sqrt{a}-x_{n}|<|\sqrt{\frac{1}{4}}-t_{n}|=\delta_{n}$ . This gives an exact error estimate.
By similar observations, we can find that if $y_{n}$ is generated by

$y_{n+1}= \frac{1}{2}(y_{n}+\frac{b}{y_{n}})$ , $y_{0}=1$ (15)

with $b= \frac{(m-1)^{2}}{m^{2}}$ we have

$y_{n+1}= \frac{2u_{n}(u_{n}-1)+1}{m\frac{2u_{\mathfrak{n}}(u_{n}-1)}{(m-1)}}$ , $u_{1}=2m(m-1)+1$ . (16)

Thus if $a \geq\frac{(m-1)^{2}}{m^{2}}$ we have a more precise error estimate as

$| \sqrt{a}-x_{n}|\leq\frac{(m-1)}{m(u_{n}-1)}$ (17)

where $u_{n}$ is generated by

$u_{n+1}=2u_{n}(u_{n}-1)$ , $u_{1}=2m(m-1)+1$ . (18)

$\square$

In this example, exact error estimates are given between the exact solution $\sqrt{a}$ and
its approximations $x_{n}’ s$ obtained by the Newton method using particular properties of the
problem. In order to prove the convergence of the Newton method in more general situations,
Kantorovich[10] and Kantorovich and Akilov[17] considered a general iteration process

$x_{n+1}=S(x_{n})$ , (19)

where $S$ is a $C^{1}$ -map defined in the sphere $\Vert x-x_{0}||<R$ of some B-space $X(x_{0}\in X)$ . Along
with Eq.(19), he considered a real equation

$t_{n+1}=g(t_{n})$ , (20)

where $g$ is a $C^{1}$ -map defined in the interval $[t_{0}, t’]$ $(t’=t_{0}+r<t_{0}+R)$ . The function $g$ is
said to majorize the operator $S$ if
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(1)
$||S(x_{0})-x_{0}||\leq g(t_{0})-t_{0}$ , (21)

(2)

11 $S’(x)||\leq g’(i)$ whenever $||x-x_{0}\Vert\leq t-t_{0}$ . (22)

Theorem 2.1 (Kantorovich[10] and Kantorovich and Akilov[17]) In the above-mentioned
situation, if $g$ majorizes $S$ and if

$t=g(t)$ (23)

has a root in $[t_{0}, t’]$ , then the equation
$x=S(x)$ (24)

also has a solution $x^{*}$ , to which the sequence $\{x_{n}\}$ starting from $x_{0}$ is convergent. Also,

$\Vert x^{*}-x_{n}||\leq t^{*}-t_{n}$ , (25)

where t’denotes the least root of the equation $t=g(t)$ . $\square$

Using this theorem, Kantorovich[10] proved the following famous convergence theorem.

Theorem 2.2 (Kantorovich[10] and Kantorovich and Akilov[17]) Let $B=\{x|||x-x_{0}||\leq$

$r\}$ and $f$ is in $C^{2}$ on $B$ . Moreover, let

(1) the linear operator $L=[f’(x_{0})]^{-1}$ exist;

(2)
$\Vert Lf(x_{0})\Vert\leq c$ ; (26)

(3)
$||Lf^{u}(x)\Vert\leq K$ $(x\in B)$ . (27)

Now, if
$h=cK< \frac{1}{2}$ (28)

and
$r \geq r_{0}=\frac{1-\sqrt{1-2h}}{h}c$ (29)

hold, Eq.(l) has a solution $x^{*}$ to which both the original Newton method

$x_{n+1}=x_{n}-[f’(x_{n})]^{-1}f(x_{n})$ (30)

and the simplified Newton method

$x_{n+1}=x_{n}-[f’(x_{0})]^{-1}f(x_{n})$ (31)

are convergent and $||x^{*}-x_{0}||\leq r_{0}$ holds. Furthermore, if for $h< \frac{1}{2}$

$r<r_{1}= \frac{1+\sqrt{1-2h}}{h}c$, (32)
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the solution $x^{*}$ is umique in $B$ .
The speed of convergence of (30) is characterized by

$||x^{*}-x_{n}|| \leq\frac{1}{2^{n}}(2h)^{2^{\mathfrak{n}}}\frac{c}{h}$ $(n=0,1, \ldots)$ (33)

and that of (31), for $h< \frac{1}{2}$ by

$||x^{*}-x_{n}|| \leq\frac{c}{h}(1-\sqrt{1-2h})^{n+1}$ $(n=0,1, \ldots)$ . (34)

$\square$

Remark 2.1 The conditions $f\in C^{2}$ and (3) can be replaced by $f\in C^{1}$ and

(3)
$||f’(x)-f’(y)\Vert\leq\alpha||x-y||$ for any $x,$ $y\in B$ . (35)

In this case $K=||L||\alpha$ . This was done by Feny[21]. Moreover, various extensions of this
theorem have been presented. See for example, Ortega and Rheinboldt[22]. Sharp error bounds
are obtained by several authors. See for example Refs. $[23]-[27]$ . $\square$

Moreover Kantorovich and Akilov[17] considered a special equation written by

$f(x)=p(x)+q(x)=0$. (36)

Let $x_{0}$ be an approximate solution of
$p(x)=0$ . (37)

He showed that if the following conditions are satisfied

(1)
$||[p’(x_{0})]^{-1}f(x_{0})\Vert\leq c$ , (38)

(2)
$||[p’(x_{0})]^{-1}f’(x_{0})\Vert\leq d<1$ , (39)

(3)
$||[\rho’(x_{0})]^{-1}f’’(x)||\leq K$ $(x\in B)$ , (40)

and if $h= \frac{cK}{(1-d)^{2}}<2^{-1}$ and $r \geq r_{0}=\frac{(I-\sqrt{1-2h})c}{h(1-d)}$ , then Eq.(36) has a solution in $B$ .
Using the theorem 2.2 and its extensions, in Ref.[17], Kantorovich and Akilov presented

the following examples of inclusions for exact solutions to functional equations:

(1) A single real and complex equation;

(2) A system of algebraic equations; in particular, they give the an example

$3x_{1}^{2}x_{2}+x_{2}^{2}$ $=$ 1,
$x_{1}^{4}+x_{1}x_{2}^{3}$ $=$ 1. (41)

They showed an inclusion of an exact solution as

0.991173 $\leq x_{1}^{*}\leq 0.991205$ ; $0.327366\leq x_{2}^{*}\leq 0.327398$ ; (42)
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(3) A nonlinear integral equation of the form

$x(s)= \int_{0}^{1}K(s, t, x(t))dt$ . (43)

Specificcaly, they considered the case of $K(s, t, u)= \frac{u^{2}sinst}{2}$ and showed an inclusion

$|x^{*}(s)-(1+0.38617s-0.0345s^{3})$ I $<0.0119$ $(s\in[0,1])$ ; (44)

(4) An initial value problem of a differential equation

$x’(t)-g(x(t), t)=0$ , $x(O)=0$ (45)

provided that $g(u, t)$ is continuous and is $C^{2}$ with respect to $u$ ;

(5) Periodic solution of the differential equation

$x”(t)+x(t)+\mu g(x(t), x’(t),$ $t$ ) $=0$ , (46)

where $g(u, v, t)$ is continuous and is $C^{2}$ with respect to $u$ and $v$ , and is periodic in $t$ with
period $k>0$ ;

(6) An eigenvalue problem of the operator $U_{t}=U+tV$ , where $U$ and $V$ are linear operators
from a Banach space $X$ into itself, provided that an eigenvalue and eigenfunction of $U$ are
known;

(7) A certain boundary value problem of a second order quasilinear differential equation with
two independent variables.

Examples of existence proofs based on Kantorovich’s theorem up to 1967 can be found
in Ref.[10, p.723, 749] and Ref.[28, p.138]. Refs. $[29]-[39]$ also give examples.

In 1969, Ra11[40] published a beautiful introductory text of the Newton method and
its applications. In this hook, techniques of the interval analysis initiated by Moore[41] and
automatic differentiations are supplemented to the points mentioned above. Since the interval
analysis is the topic of another section of the paper, we note here only that this method is based
on the doctoral thesis of Moore[41]. Detailed bibliographies can be found in Ref.[42]:

In his book[40], Rall presented a method of automatically implementing the Newton
method by making use of automatic differentiations. As an example, he treated the following
examples:

(1) A system of algebraic equations; specifically, he gave the an example

$16x_{1}^{4}+16x_{2}^{4}+x_{3}^{4}-16=0$ ,
$x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-3=0$ ,
$x_{1}^{3}-x_{2}=0$ . (47)

He showed an inclusion of an exact solution as

$x(1)=( \frac{223}{224}, \frac{63}{80}, \frac{79}{60})$ $\Vert x^{*}-x(1)$ I $\leq 1.98526343\cross 10^{-4}$ , (48)

where $x(1)$ is obtained from an initial approximation $x(O)=(1,1,1)$ by applying the
Newton iteration once.
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(2) An initial value problem of an ordinary differential equation.

(3) Two-point boundary value problem of the ordinary differential equation. In particular, he
considered

$x^{\mu}(t)-g(t, x)=0$ , $x(O)=x(1)=0$, (49)

provided that $g(t, x)$ is continuous and is $C^{2}$ with respect to $x$ on $[0,1]$ . Since this problem
demonstrates a typical application of the Newton method to functional equations, we
follow Rall’s example: Let

$f(x)= \frac{d^{2_{X}}}{dt^{2}}-g(t, x)$ . (50)

In this case, the Newton iteration becomes

$x_{m+1}=x_{m}+u_{m}$ , (51)

where $u_{m}$ is a solution of the linear boundary value problem

$u_{m}^{u}-g_{x}(t, x_{m})u_{m}=-f(x_{m})$ , $u_{m}(0)=u_{m}(1)=0$ . (52)

Using the Green function $G(t, s)$ of the linear differential operator $\tau_{x}^{p_{T}}$ with the boundary
condition $x(O)=x(1)=0$ ,

$G(t, s)=\{\begin{array}{l}s(t-1)t(s-1)\end{array}$ $t\leq s^{S}\leq 10\leq\leq t$ (53)

we can transform Eq.(52) into the following Fredholm type integral equation

$u_{m}(t)- \int_{0}^{1}G(t, s)g_{x}(s, x_{m}(s))u_{m}(s)ds=-\int_{0}^{1}G(t, s)f(x_{m}(s))ds$ . (54)

Now let us consider the specific example of $g(t, x)=tx^{2}-1$ . In this case, if we take
$x_{0}= \frac{x(1-x)}{2}$ then Eq.(54) becomes

$u_{0}(t)- \int_{0}^{1}G(t, s)s^{2}(1-s)u_{0}(s)ds=\frac{s^{7}}{42}-\frac{s^{6}}{15}+\frac{s^{5}}{20}-\frac{s}{140}$. (55)

If we consider the linear integral operator with the kernel $G(t, s)s^{2}(1-s)$ as a map from
$C[0,1]$ to $C^{2}[0,1]$ , then we have a bound $\Vert K||\leq\frac{4}{27}$ provided that the norm of $C^{2}[0,1]$ is
given by

$\Vert x\Vert=\max\{||x\Vert_{\infty}, \Vert x’\Vert_{\infty}, \Vert x^{\mu}\Vert_{\infty}\}$ . (56)

Then a solution of Eq.(55) can be obtained by the Neumann series expansion and we have
an estimate

$\Vert u_{0}(t)\Vert\leq\frac{1}{1-\Vert K\Vert}\Vert\frac{s^{7}}{42}-\frac{s^{6}}{15}+\frac{s^{5}}{20}-\frac{s}{140}\Vert\leq\frac{27}{23}\frac{31}{420}$ (57)

Moreover we have
$\Vert f’(x_{0})\Vert\leq\frac{1}{1-\Vert K\Vert}=\frac{27}{23}$ (58)

and 11 $f^{u}(x_{0})\Vert=||-2xI_{2}||\leq 2$ . Thus we have $h\leq 0.20532<0.5$ where $h$ is a constant in
Theorem 2.2 so that it becomes evident that an exact solution exists near $x_{0}= \frac{x(1-x)}{2}$
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Similar discussions are also given by Moore[43]. In this paper, illustrative examples
given in an unpublished paper by Talbot are presented:

(a)
$x^{u}(t)=(x+a)(x+a-2)[1+2t^{2}(x+a-1)]$ , $x(-1)=x(1)=0$ ; (59)

(b)
$x^{u}(t)=\exp(x(t))$ , $x(-1)=x(1)=0$; (60)

(c)
$x^{\mu}(t)=\exp(-x(t))$ , $x(-1)=x(1)=0$ (this problem has $tw\Theta$ solutions). (61)

In Ref.[44], the two-point boundary value problem

$x”(t)+g(t, x’, x”)=0$ , $x(a)=x(b)=0$ (62)

is considered and a method is given for calculating Kantorovich’s constants. A more general
two-point boundary value problem

$x^{u}(t)=g(t, x(t))$ , $B_{1}y(a)+B_{2}y(b)=w$ , (63)

where $g$ : $R^{n+1}arrow R^{n},$ $g\in C^{2},$ $B_{1},$ $B_{2}$ are matrices and $w\in R^{n}$ , is considered by Kedem[45].
As examples, he considered

(a)
$\epsilon x^{u}=(x^{2}-(t-1)^{2})x’$ , $x(O)=A,$ $x(1)=B$ ; (64)

(b)

$h^{\prime\prime\prime\prime}+hh^{m}+gg’=0,$ $g^{\mu}+hg’-hg’=0,$ $h(O)=h’(0)=h(1)=h’(0)=0,$ $g(O)=\Omega_{0},g(1)=\Omega_{1}$ .
(65)

See also Ref.[46]. Applications to control and oscillation theory is presented in Ref.[47]. Re-
cently, two different approaches have been given by Nakao[48] and Plum[49]. We will discuss
their approaches later.

3 Simplified Newton Method and Urabe’s Convergence The-
orem

3.1 Historical Devtllopment

In Ref.[50], Cesari discussed the existence analysis conceming solutions of linear and
nonlinear equations $Kx=y$ in function spaces. His method is related to Galerkin’s method
and reduces the problem to the study of a finite system of transcendental determining equations
in a finite-dimensional Euclidean space. He discussed a process which may provide an answer
to two questions: (1) If a certain m-th approximation $x(m)$ is known, is it possible to argue
whether an exact solution $X$ also exists? (2) If the answer to (1) is affirmative, is it possible to
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give an upper estimate for the difference $X-x(m)$ (error bound)? He reduced these problems
to Banach’s contraction mapping principle or Schauder’s fixed point theorem. He treated as an
example the nonlinear ordinary differential equation

$x^{u}+x+\alpha x^{3}=\beta t$ $(0\leq t\leq 1)$ (66)

with homogeneous boundary conditions $x(O)=0,$ $x’(1)+hx(1)=0$ . He showed, for example,
that in case of $h=1$ and $\alpha=\beta=\frac{1}{2}$ an exact solution $x(t)$ of Eq.(66) exists in the neighborhood
of the first Galerkin approximation $x(1)=0.11873\sin 2.0288t$ as $||x(t)+x(1)||\leq d=0.0038$ .

In Ref.[51], Cesari treated as an example the following nonlinear ordinary differential
equation

$x”+x^{3}=\sin t$ , (67)

and showed that it has a periodic solution of period $2\pi,$ $X(t)$ , in the neighborhood of an
approximate solution $x(v)=1.434\sin t-0.124\sin 3t$ as $||X(t)-x(t)||\leq d=0.124$ .

Knobloch presented a remark on Cesari’s work[52] and gave an another example of
computer-assisted existence proof of periodic solutions of a nonlinear ordinary differential equa-
tion of the second order[53].

In 1965, Urabe[54] considered periodic nonlinear differential systems

$x’=X(x, t)$ , (68)

where $x$ and $X$ are vectors of the same dimension and $X(x, t)$ is smooth. He has proved that if
an isolated periodic solution $x(t)$ of Eq.(68) exists in a suitable bounded region, then $x(t)$ can
always be approximated by means of the Galerkin process. Then, he presented a convergence
theorem of the simplified Newton method. Using this, he further showed that if the conditions
of his convergence theorem are met at a known Galerkin approximation $x_{m}(t)$ , an exact isolated
periodic solution $x(t)$ can be proven to exist in the neighborhood of $x_{m}(t)$ , and an error bound
for $x(t)-x_{m}(t)$ can be determined. More precisely, to determine a periodic solution of Eq.(68)

he considered the trigonometric polynomial

$x_{m}(t)=a_{0}+ \sum_{n=1}^{m}(a_{2n-1}\sin nt+a_{2n}\cos nt)$ . (69)

Substituting Eq.(69) into Eq.(68), he obtained transcendental nonlinear equations for unde-
termined coefficients $a_{0},$ $a_{1},$ $a_{2},$ $\ldots,$ $a_{2m-1},$ $a_{2m}$ . This procedure is nothing but the well-known
Galerkin procedure. He proved

Theorem 3.1 (Urabe[54]) Let $X(x, t)$ and its derivatives with respect to the x-coordinates
be continuously differentiable with respect to the same x-coordinates and $t$ in the region $D\cross L$ ,
where $D$ is a closed bounded region of the x-space and $L$ is the real line. If there is an isolated
periodic solution $x=x(t)$ of Eq.(68) lying inside $D$ , then there exists a Galerkin approximation
$x=x_{m}(t)$ for any order $m\geq m_{0}$ lying in $D$ provided $m_{0}$ is sufficiently large. Such Galerkin
approximations $x=x_{m}(t)$ converge uniformly as $marrow\infty$ to the initial exact solution $x=\hat{x}(t)$

together with their first-order derivatives. $\square$
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As an example, in Ref.[54] he treated

$x^{u}+1.52x+(x-1.5\sin t)^{3}=2\sin$ t. (70)

He showed that in the neighborhood of the $3rd$-order Galerkin approximation,

$x=x^{\#}(t)=1.5994l\sin t-0.00004\sin 3t$ , (71)

there exists an exact periodic solution $\hat{x}(t)$ of Eq.(70) which satisfies

$||\hat{x}(t)-x\#(t)||<0.000141$ . (72)

In the succeeding paper[55], Urabe and Reiter treated the Van der Pol equation with a harmonic
forcing term

$x^{u}-\epsilon(1-x^{2})x’+x=\epsilon E\sin\omega t$ . (73)

They calculated the 15th Galerkin approximation and showed that in its neighborhood there
is an exact periodic solution. This equation may be the first practical equation treated by
self-validating numerics. Then, his method, which is now called Urabe’s method, has been
applied for the purpose of numerical analysis of periodic solutions of many nonlinear periodic
systems[56, 57, 58, 59]. In Ref.[58], in order to solve a determining nonlinear equation, Shinohara
developed a geometrica] ulethod, which is a kind of continuation method. Related problems are
also treated by Refs. $[60]-[73]$ .

Moreover, Urabe’s method is extended to nonlinear autonomous $systems[74]-[77]$ and
to numerical analysis of quasi-periodic solutions of quasi-periodic differential systems $[78]-[80]$ .
In the same philosophy, Urabe developed a theory for the method of computing solutions of the
multi-point boundary value problem of ordinary differential equations[81].

Componentwise error estimates for approximate solutions of nonlinear equations are
discussed in Refs. $[82, 83]$ . An application is discussed to control problems in Refs. $[84]-[87]$ .

Similar approaches of Urabe are presented to include closed orbits of chaotic nonlinear
differential equations in Refs.[88, 89, 90].

3.2 Generalization and Abstraction–Infinite Dimensional Homotopy Method–

In this section we would like to point out that Urabe’s method can be extended to
more general functional equations. In general, it is well known that nonlinear problems require
Banach space formalism, and we consider the problem of finding a solution of

$f(x)=y$ , (74)

where $f$ is a continuous map from a suitable B-space $X$ into another B-space $Y$ . We would
like to point out that operator equations solvable by Galerkin’s method can be abstracted and
generalized as A-proper operator equations, whose notion was developed by Petryshyn[91].
First we show that Theorem 3.1 can be generalized in the context of A-proper operator theory.
This is achieved by using the infinite dimensional homotopy method developed by the author
and his $coworkers[92]-[97]$ .

The A-proper operator is defined through a projection scheme[91]:
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Definition 3.1 [91] Let $X$ be a B-space and $\{x_{n}\}$ be a sequence of finite dimensional subspaces
of $X$ . Moreover, let $P_{n}$ : $Xarrow X_{n}$ be a linear continuous projection operator. If for any
$x\in XP_{n}xarrow x$ holds true as $narrow\infty$ , then $X$ is called a B-space with a projection scheme
$\Pi=\{X_{n}, P_{n}\}$ . $\square$

It is known[91] that there are various kinds of projection schemes corresponding to,
for example, a difference scheme, Galerkin’s scheme and so on.

Definition 3.2 [91] Let $X$ and $Y$ be B-spaces with projection schemes $\{X_{n}, P_{n}\}$ and $\{Y_{n}, Q_{n}\}$ ,
respectively. If for any $n>0\dim X_{n}=\dim Y_{n}$ holds true, $\Gamma=\{X_{n}, P_{n}; Y_{n}, Q_{n}\}$ is called an
operator projection scheme. $\square$

Definition 3.3 [91} Let $X$ and $Y$ be B-spaces having an operator projection scheme $\Gamma=$

$\{X_{n}, P_{n};Y_{n}, Q_{n}\}$ . Let $D$ be an open set in $X$ . An operator $f$ : $cl(D)arrow Y$ is A-proper iff
the following holds true: $Q_{m}f$ is continuous and for any bounded infinite sequence $\{x_{m}\}\subset$

$D$ $(x_{m}\in D_{m}=D\cap X_{m})$ satisfying $Q_{m}f(x_{m})arrow y(marrow\infty)$ there exist a subsequence $\{x_{m_{j}}\}$

of $\{x_{m}\}$ and $x$ such that $x_{m_{j}}arrow x$ as $jarrow\infty$ and $f(x)=y$ hold true. $\square$

Example 3.1 [91]

(1) Let $\Pi=\{X_{n}, P_{n}\}$ be a projection scheme satisfying $||P_{n}||=1$ . Then, if $f$ : $Xarrow X$ is a
ball condensing operator, $I-f$ becomes an A-proper operator with respect to $\Pi$ .

(2) There are many operators in a class of monotone operators which become A-proper oper-
ators. $\square$

The concept of A-proper homotopy plays an important role. This concept is introduced
by Makino and the $prese^{\eta}tauthor[92]$ .

Definition 3.4 Let $X$ and $Y$ be B-spaces having an operator projection scheme $\Gamma=\{X_{n},$ $P_{n}$ ;
$Y_{n},$ $Q_{n}$ }. Let $D$ be an open set in $X$ . A homotopy $h$ : $cl(D)\cross[0,1]arrow Y$ is called an $A-$

proper homotopy with respect to $\Gamma$ iff the following holds true: $Q_{m}h$ is continuous. For any
$t_{m}arrow t$ $(t_{m}\in[0,1])$ and for any bounded infinite sequence $\{x_{m}\}\subset D$ $(x_{m}\in D_{m}=D\cap X_{m})$

satisfying $Q_{m}h(x_{m}, t_{m})arrow y(marrow\infty)$ , there exists a subsequence $\{x_{m_{j}}\}$ of $\{x_{m}\}$ and $x$ such
that $x_{m_{j}}arrow x$ as $jarrow\infty$ and $h(x, t)=y$ hold true. $\square$

Example 3.2 (1) (A-properness of the fixed point homotopy)[91] Let $X$ be a B-space with
a projection scheme $\Pi=\{X_{n}, P_{n}\}$ and $D$ be a bounded open set in $X$ . If $f(cl(D))$ is
bounded and the fixed point homotopy $h(x, t)=(1-t)(x-x)+tf(x),$ $(x, t)\in cl(D)\cross[0,1]$ ,
is A-proper for each fixed $t\in[0,1]$ with respect to $\Pi$ , then $h$ is A-proper with respect to
$\Pi$ .

(2) (A-properness of the odd homotopy)[92] Let $X$ be a B-space with a projection scheme
$\{X_{n}, P_{n}\}$ and D C $X$ be a bounded open set symmetric with respect to the origin. If
$f(cl(D))$ is bounded and the odd homotopy

$h(x, t)= \frac{(1-t)(f(x)-f(-x))}{2}+tf(x)+(1-t)y$ , $(x, t)\in cl(D)\cross[0,1]$ , (75)
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is A-proper for eerh fixed $t\in[0,1]$ with respect to $\Pi$ , then $h$ is A-proper with respect to
$\Pi$ . $\square$

We are nOw inapoSition tO State the main theorem Of thiS SubSeCtion:

Theorem 3.2 Let $X$ and $Y$ be B-spaces having an operator projection scheme $\Gamma=\{X_{n}, P_{\mathfrak{n}};Y_{\mathfrak{n}}, Q_{n}\}$ ,
and $D$ be an open set in $X$ . Moreover, let $f$ : $cl(D)arrow Y$ be an A-proper operator and
$h(x, t)$ : $cl(D)\cross[0,1]arrow Y$ be an A-proper homotopy. If $h$ satisfies the following conditions,
then at least a solution of $f(x)=y$ can be numerically obtained: (1) $h$ is continuous with respect
to $t$ and satisfies $h(x, 0)=g(x)$ and $h(x, 1)=f(x)$ . (2) For each $n,$ $Q_{n}y$ is a regular value of
$Q_{n}g(x)$ and $Q_{n}g(x)=Q_{n}y$ has an odd number of solutions in $D_{n}=D\cap X$ . Moreover, we assume
that we can obtain a solution $x_{0n}$ of $Q_{n}g(x)=Q_{n}y$ , which is not connected with other solutions
of $Q_{n}g(x)=Q_{n}y$ by the solution curve of $Q_{n}h(x, t)=Q_{n}y$ . (3) $h(x, t)\neq y$ on $\partial D\cross[0,1$ ). $\square$

(Proof) Without loss of generality we can assume $Q_{n}y$ is a regular value of $Q_{n}h(x, t)$ . Thus,
the solution set of $Q_{n}h(x, t)=Q_{n}y$ consists of disjoint one-dimensional manifolds. From condi-
tion (2) there exists at least one solution curve starting from a solution of $Q_{n}g(x)=Q_{n}y$ and
reaching the $t=1$ plane or $\partial D\cross(0,1)$ so that there exists $(x_{n},t_{n})$ satisfying

$Q_{\mathfrak{n}}h(x_{n}, t_{n})=Q_{n}y$ on $D_{n}\cross\{1\}$ or $\partial D_{n}\cross(0,1)$ . (76)

In fact, starting from $(x_{0n}, t=0)$ by tracing the solution curve of $Q_{n}h(x, t)=Q_{n}y$ numerically,
we can obtain $(x_{n}, t_{n})$ . From the boundedness of $\{t_{n}\}\subset(0,1)$ , it follows that there exists a
subsequence $\{t_{n_{j}}\}$ such that $t_{n_{j}}arrow t^{*}\in[0,1]$ as $jarrow\infty$ . Since $h$ is an A-proper homotopy,
there exists a subsequence $\{x_{m}\}$ of $\{x_{n_{j}}\}$ and $x^{*}$ such that $x_{m}arrow x^{*},$ $h(x^{*}, t^{*})=y$ as $marrow\infty$ .
If we assume $t^{*}<1$ , it follows that $(x^{*}, t^{*})$ lies on $\partial D\cross[0,1$ ), which contradicts condition (3).
Thus, it becomes evident that $t^{*}=1$ , so that $x^{*}$ is a solution of $f(x)=y$ . $\square$

Corollary 3.1 Let $X$ be a B-space with a projection scheme $\Pi=\{X_{n}, P_{n}\},$ $D$ is an open
bounded set including the origin and $f$ : $Xarrow X$ . If the fixed point homotopy $h(x, t)=$

$(1-t)x+tf(x)$ satisfies the following conditions, then the solution to $f(x)=0$ can be obtained
numerically: (1) For each $t\in[0,1]h$ is A-proper with respect to $\Pi$ , and $f(cl(D))$ is bounded.
(2) $h(x,t)\neq y$ on $\partial D\cross[0,1$ ). $\square$

(Proof) From Example 3.2, $h$ becomes an A-proper homotopy with respect to $\Pi$ . Since
$P_{n}h(x, t)=P_{n}0$ has a unique solution, it is easy to see that the conditions of Th.3.2 hold
true. $\square$

Corollary 3.2 Let $X$ be a B-space with a projection scheme $\Pi=\{X_{n}, P_{n}\},$ $D$ be an open
bounded set symmetric with respect to the origin, and $f$ : $Xarrow X$ . If the odd homotopy $h$

satisfies the following conditions, then the solution to $f(x)=y$ can be obtained numerically:
(1) $h(x,t)=(1-t)0.5(f(x)-f(-x))+tf(x)+(1-t)y$ is A-proper with respect to $\Pi$ for
each fixed $t\in[0,1]$ and $f(cl(D))$ is bounded. (2) $h(x, t)\neq y$ on $\partial D\cross[0,1$ ). (3) For each $n$ ,
$P_{n}y\in D_{n}$ is a regular value of $P_{n}h(x, 0)$ . $\square$

(Proof) From Example 3.2, it follows that $h$ is an A-proper homotopy. Moreover $P_{n}0$ is a trivial
solution of $P_{n}h(x, 0)=0$ . If the solution curve starting from $(P_{n}0, t=0)$ does not return to the
$t=0$ plane, then $aU$ the conditions of Th.3.2 are satisfied. Even if this solution curve returns
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to the $t=0$ plane at $(x_{0n}, t=0)$ , from the oddness of the homotopy, $-(x_{0n}, t=0)$ is also a
solution. Thus, starting from this point we can restart the curve tracing. If the solution curve
returns to the $t=0$ plane again, the process is repeated. Since $P_{n}h(x, 0)=0$ has odd number
of solutions, we can find a solution curve which does not retum to the $t=0$ plane. Thus, in
this case, the conditions of Th.3.2 also hold true. $\square$

Corollary 3.3 (Schauder and Darbo’s fixed point theorem) Let $X$ be a B-space with a
projection scheme $\Pi=\{\zeta_{n}P_{n}\},$ $D$ be a open bounded convex set in $X$ , and $p:cl(D)arrow cl(D)$ .
If $p$ is a continuous ball condensing operator, $p$ has at least a fixed point in $cl(D)$ . $\square$

(Proof) Let $x_{0}\in D,$ $f(x)=p(x)-x$ , and $h(x, t)=(1-t)(x_{0}-x)+tf(x)$ . Then, $h$ becomes an
A-proper homotopy with respect to $\Pi$ . Moreover, it is easily seen that the conditions of Th.3.2
are satisfied. $\square$

Now, we would like to present a problem. Although by A-proper homotopy theory
a method is given for calculating an approximate solution sequence $\{x_{n}\}$ whose subsequence
converges to a true solution $x^{*}$ , in practice, we cannot choose a convergence subsequence from
this approximation sequence! This difficulty can be overcome with the aid of an Urabe-type $a$

posteriori error estimation method.
In the following, we assume

Assumption 3.1 Let $X$ be a B-space with a projection scheme $\{X_{n}, P_{n}\}$ such that $P_{n}P_{m}=$

$P_{\min\{n,m\}}$ and $||P_{n}||\leq 1$ . $\square$

In order to overcome the above-mentioned difficulty, we propose the following projec-
tive simplified Newton method in $X$ :

$x_{k+1}=x_{k}-P_{k+1}F^{-1}f(x_{k})$ , $k\geq 0,$ $x_{0}\in X_{0}$ . (77)

We note that from the definition, $x_{k}$ belongs to $X_{k}$ . The following is an Urabe-type convergence
theorem for the projective simplified Newton method:

Theorem 3.3 Let $X$ be a B-space satisfying Assumption 3.1, $Y$ be a B-space, $D\subset X$ is a
nonempty open set, and $f$ : $Darrow Y$ is a $C^{1}$ -operator. Assume that $x\in D$ , being an approximate
solution of $f(x)=0$ , and a bounded linear operator $F$ : $Xarrow Y$ , being an approximation
of $f’(x)$ , are obtained. Moreover, we assume that there exists a $\delta$ satisfying the following
conditions:

(c1) $B(x_{0}, \delta)\subset D$ ,

(c2) $||f’(x)-F||\leq K_{0}frx\in B(x_{0}, \delta)$ ,

(c3) $F^{-1}$ : $Yarrow X$ exists and satisfies

$||F^{-1}|(\delta^{-1}\Vert f(x)\Vert+K_{0})\leq 1$, (78)

(c4) $||F^{-1}\Vert K_{0}<1$ .
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Then the following statements hold true:

(a) There exists a unique solution, $x^{*}$ , of $f(x)=0$ in $B(x_{0}, \delta)$ ,

(b) $x_{k}\in B(x_{0}, \delta)$ for any $k\geq 0$ ,

(c) $x_{k}arrow x^{*}$ as $karrow\infty$ ,

(d) $\Vert x_{k}-x^{*}\Vert\leq(1-\Vert F^{-1}\Vert K_{0})^{-1}\Vert F^{-1}f(x_{k})\Vert$ .
Here, $x_{k}isassumedtobegeneratedbyEq.(77)$ . $\square$

We now present a method for numerically identifying an approximate solution of
Eq.(74) satisfying the conditions of Th.3.3. Let $X$ be a B-space satisfying Assumption 3.1,
$Y$ a B-space with a pro.iection scheme $\{Y_{n}, Q_{n}\},$ $D\subset X$ a nonempty open set, and $f$ : $Darrow Y$ ,
a $C^{1}$ -operator such that $f’$ is $\alpha$-Lipschitz continuous. We assume that there exists an algorithm
solving an approximate equation $Q_{n}f(x)=0,$ $x\in X_{n}$ for sufficiently large $n$ .

Algorithm 3.1 (Step 1) Let $n=1$ .

(Step 2) Calculate an approximate solution of $Q_{n}f(x)=0,$ $x\in X_{n}$ . If the solution cannot be
obtained, go to Step 4.

(Step 3) Examine whether there exists a $\delta>0$ such that $B(x_{n}, \delta)\subset D$ and 1 $f’(x_{n})^{-1}||(\delta^{-1}||f(x_{n})||+$

$\alpha\delta)<1$ . If there exists such a $\delta$ , go to Step 5.

(Step 4) Let $n=n+1$ and go to Step 2.

(Step 5) Then, it is seen that in $B(x_{n}, \delta)$ there exists a unique solution $x^{*}$ of $f(x)=0$. If $\delta$ is
greater than the desired precision, iterate the following starting from $x_{n}$ :

$x_{k+1}=x_{k}-P_{k+1}f’(x_{n})^{-1}f(x_{k})$ . (79)

An error estimation is given by

$||x_{k}-x^{*}\Vert\leq(1-\Vert f’(x_{n})^{-1}\Vert\alpha\delta)^{-1}\Vert f’(x_{n})^{-1}f(x_{k})||$. (80)

$\square$

Theorem 3.4 Together with the conditions of Algorithm 3.1, we assume that $f$ is A-proper,
Fredholm with index zero, $f(x)\neq 0$ on $\partial D$ and $0$ is a regular value of $f$ . Then, Algorithm 3.1
is completed in finite cycles. $\square$

The proof can be found in Ref.[96].
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4 Arithmetic for Self-Validating Numerics and Computational
Complexity

In this section we shall discuss computer arithmetic for self-validating numerics. Since
we are concerned with mathematical proofs of nonlinear problems, automatic rigorous estima-
tion of rounding errors is necessary for such self-validating numerics. Although this kind of
rigorous estimation of rounding errors had been believed to be difficult, development of the
studies of self-validating numerics in the last decade shows that such estimation is not very
difficult and that there are methods for practical implementation.

4.1 Machine Interval Analysis

A fundamental tool of such automatic estimation is the interval analysis introduced
in Moore’s doctoral thesis entitled “Interval arithmetic and automatic errors analysis in digital
computing” [41]. In this thesis, machine interval arithmetic is introduced to automatically esti-
mate rounding errors caused by, for example, floating point calculations. Here, a machine inter-
val is an interval with end points being represented by floating point numbers. In this arithmetic
system, for example, the number $\pi$ is represented as $\pi\in[3.14,3.15]$ . The process generating
a sequence of machine $i_{I_{1}}uervals$ such as [3.141, 3.142], [3.1415, 3.1416], [3.14159, 3.14160], . . ., is
a computation of $\pi$ in the interval analysis. Thus in the machine interval analysis, a machine
interval is a fundamental data type. Aritlunetics on machine intervals can be defined. Let $A$

and $B$ be machine intervals $and*\in t+,$ $-,$ $\cross,$ $/$ }, then $A*B$ is defined by

$A*B=\{a*b|a\in A, b\in B\}$ . (81)

In this case, the following properties hold:

$[a, b]+[c, d]$ $=$ $[a+c, b+d]$ ,

$[a, b]-[c, d]$ $=$ $[a-d, b-c]$ ,
$[a, b]$ $[c, d]$ $=$ $[ \min(ac, ad, bc, bd), \max(ac, ad, bc, bd)]$ ,
$[a, b]/[c, d]$ $=$ $[a, b]\cdot[1/d, 1/c]$ . (S2)

Thus, it turns out that arithmetics between machine intervals can be executed by the arithmetics
among end points of intervals. For practical implementations of interval arithmetics, see, for
example, Neumaier[42] and Kulish and Miranker[3].

If we define a width and an absolute value of an interval respectively by $w([a, b])=b-a$
and $|[a, b]|= \max\{|a|, |b|\}$ , then for intervals $A$ and $B$ the following holds:

$w(A\pm B)$ $=$ $w(A)+w(B)$ ,
$w(A\cdot B)$ $\leq$ $w(A)|B|+|A|w(B)$ . (S3)

The first equation of (83) indicates that

$w(A-A)=2w(A)$ , (84)
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which implies that the widths of intervals tend to increase as calculations proceed. This draw-
back has been overcome by Kulish and his coworkers$[3, 13]$ . They showed that widths of intervals
can be narrowed by utilizing an interval version of the residue correction method[98]. Archi-
tecturally, they proposed the use of a long accumulator to exactly calculate inner products of
vectors whose components are fioating point numbers[99]. They showed, through many exam-
ples, that not only linear problems, but also nonlinear problems, can be solved by this method
with guaranteed accuracy[100]. Moreover, they showed that functional equations can also be
solved by means of their method[101].

As software for self-validating numerics, FORTRAN-SC, ACRITH-XSC, PASCAL-
SC, PASCAL-XSC, and so on have been developed. Since there already exist good $reviews[6]-[8]$ ,
[12, 13, 102] on them, we leave detailed discussion to others. Results related to a rounding error
analysis up to 1965 are gathered in Ref.[103].

4.2 Rational Arithmetic

In this section, we describe our approach using rational arithmetic for self-validating
numerics. Why do we use rational arithmetic? The following is a partial answer to this question:

(1) Most numerical algorithms are designed by analytical theory which is based on the concept
of real numbers forming a field. The fact that the set of rational numbers also forms a
field and is dense in the set of real numbers is very conductive to the design of a numerical
algorithm. On the other hand, a set of floating numbers with fixed length does not form
a field so that even an associative law does not hold.

(2) Also, a numerical algorithm using rational arithmetic should involve rounding, because the
number of bits needed to represent rational numbers become extremely large even after
a few iterations of rational arithmetic. However, we can round a rational number with
desired accuracy, by for example, using its continued fraction expansion. Thus rounding
errors can be easily estimated.

(3) Computational complexity theory fits very well with the rational arithmetic model of com-
putation. Namely, to obtain a solution to a numerical problem, the required precision of
arithmetic depends on the problem. Although floating point numbers have fixed precision,
rational numbers can express arbitrary precisioned numbers. Thus, at least theoretically,
rational arithmetic has an advantage. For example, the design of a polynomial time
algorithm of linear programming is based on rational arithmetic.

We now describe how to use rational arithmetic for self-validating numerics. For
present purposes, we start with a discussion of how to represent natural numbers. Let $P$ be a
fixed natural number greater than one. Then, using $P$ as a base, an arbitrary natural number
$a$ can be represented as

$a=a_{n}P^{\mathfrak{n}}+a_{n-1}P^{n-1}+\cdots+a_{1}P+a_{0}$, (85)

where $a_{i}$ satisfying $0\leq a;<P$ is called a digit and $a_{n}\neq 0$ . We shall denote the correspondence
(85) as

$a=(a_{n}, a_{n-1}, \cdots, a_{1}, a_{0})_{P}$ . (86)
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Then a rational number $q$ is represented as

$q=s \frac{q_{1}}{q_{2}}$ , (87)

where $s$ is the sign of $q$ and $q_{1}$ and $q_{2}$ are natural numbers except in the case of $q=0$ . If $q=0$ ,
then we represent it as $s=+ors=-,$ $q_{1}=0$ and $q_{2}=1$ . We assume that in normalized
form $q_{1}$ and $q_{2}$ are mutually prime. An efficient implementation of rational arithmetic such as
addition, subtraction, multiplication and division is described, by for example, Knuth[104] so
that we omit a description here.

We consider here how to round rational numbers. For this purpose, the continued
fraction expansion is useful. Let $\omega$ be a positive real number. Its continued fraction expansion
can be obtained as follows: Let $[\omega]$ be an integer part of $\alpha/$ . Let

$a_{0}=[w]$ . (88)

If $w-a_{0}\neq 0$ , then we can write ($v$ as

$\omega=a_{0}+\frac{1}{\omega_{1}}$ , (89)

where {$v_{1}= \frac{1}{\omega-a_{0}}$ Since $w_{1}>1$ we let
$a_{1}=[\omega_{1}]$ . (90)

Continuing this process, we have a continued fraction expansion of $\omega$ :

$\omega=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\circ s+\perp}}}$
. (91)

We shall denote this relationship as $w=[a_{0}, a_{1}, a_{2}, \ldots]$ . It is known that if $\omega$ is a rational
number, the numbers $a_{0},$ $a_{1},$ $a_{2},$

$\ldots,$
$c$an be directly obtained by the Euclidean algorithun. A

rounding of the real $\omega$ is obtained by truncating its continued haction expansion as

$\omega\simeq[a_{0}, a_{1}, a_{2}, \ldots, a_{n}]$ . (92)

If we let
$\frac{p_{n}}{q_{n}}=[a_{0}, a_{1}, a_{2}, \ldots, a_{n}]$ , (93)

then,

$p_{n}+\iota=a_{n+\iota p_{n}+p_{n-\iota}}$ , $p_{1}=a0a\iota+1$ , $p0=a_{0}(n\geq 1)$ ,

$q_{n+1}=a_{n+1}q_{n}+q_{n-1}$ , $q\iota=a_{1}$ , $q0=1(n\geq 1)$ (94)

hold. From this, it is easy to see that

$p_{n}q_{n-1}-p_{n-1}q_{n}=(-1)^{n+1}$ (95)

holds true. Rounding error of approximating $\omega$ by $p_{n}/q_{n}$ can be easily estimated as follows.
The real $\omega$ can be represented as

$\omega=[a_{0}, a_{1}, a_{2}, \ldots, a_{n}, \omega_{n+1}]$. (96)
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Thus, from Eqs.(94) we have
$\omega=\frac{\omega_{n+1}p_{n}p_{n-1}}{\omega_{n+1}q_{n}+q_{n-1}}$ (97)

From this we have
$| \omega=\frac{p_{n}}{q_{n}}|\leq\frac{1}{q_{n}^{2}}$ (98)

Moreover, if $n$ is even $\omega\geq\ _{n}q$ holds, and if $n$ is odd $w\leq a_{n}q^{L}$ It is well known that the
approximation of $\omega$ by $\ _{n^{\llcorner}}q$ is optimal in the following sense:

Theorem 4.1 (Lagrange) (i) Let $w$ be a positive real number and $\rho_{L}q_{n}$ be its n-th continued
fraction approximation. Then, for any integer $p$ and any integer $q$ satisfying $0<q\leq q_{n}$

$|p-\omega q|>|p_{n}-wq_{n}|$ (99)

holds true.

(ii) For any integer $q$ satisfying $q_{n}<q<q_{n+1}$ and for any integer $p$

$|p-wq|>|p_{n}-\omega q_{n}|$ (100)

holds true. $\square$

We now consider intervals with rational number end points.

Theorem 4.2 [105] Let $R$ be a set of sequences of intervals $\{A_{i}\}satis\Psi ing$ the conditions

(1) $A_{0}\supseteq A_{1}\supseteq\ldots\supseteq A_{n}\supseteq A_{n+1}\supseteq\ldots$

(2) $w(A_{n}=[a_{n}, b_{n}])=b_{n}-a_{n}arrow 0$ as $narrow\infty$ .
Then, the set $R$ can be identified with the set of real numbers. If we add one more postulation
that

(3) $a_{n}$ and $b_{n}$ are computable, then $R$ becomes the set of computable reals. $\square$

From this theorem, we may consider a data type having the form

{ $[r_{1},$ $r_{2}]|r_{1}$ and $r_{2}$ are rational numbers} (101)

to be real type. Arithmetic between real type-data can be defined through Eq.(82). Moreover,
a rounding operator for real type data is defined by

$\phi_{n}[r_{1}, r_{2}]=[\nabla r, \triangle_{n}r_{2}]$ . (102)

Here, $\nabla n^{f}1=g_{2\mathfrak{n}}q^{1L}$ and $\backslash \Delta_{n}r_{2}=\frac{P2\mathfrak{n}+1}{q_{2\mathfrak{n}+1}}$ . Apparently,

$[r_{1}, r_{2}]\subseteq\phi[r_{1}, r_{2}]$ (103)

holds true.
Truncation error bounds for special functions are given, for example, by Ref.[106].
We now consider to solve exactly a matrix equation

$Ax=b$ , (104)

where $A$ is an $n\cross n$ matrix whose elements are all rational numbers and $b$ is an n-dimensional
vector whose elements are also all rational numbers. Edmonds[107] has shown that
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Theorem 4.3 (Edmonds[107]) Let $A$ be an $n\cross n$ matrix whose elements are all rational
numbers, and suppose that $A$ requires at most $m$ binary digits to write down. Then, the
determinant of A requires no more than $O(nm)$ digits to write. $\square$

For the proof, see Refs. $[107]-[109]$ .
Based on this theory, it is proven that a solution of Eq.(104) can be obtained in

polynomial time of input size, which is defined by the number of digits required to describe $A$

and $b[109]$ .
Recently, computational complexity of numerical problems related to mainly one di-

mensional function has been studied by Ko[110]. In this book he has defined a class of polynomial
computable functions and shown that

(1) Let ${\rm Max}$ be an operator which maps a function $f$ : $[0,1]^{2}arrow R$ to the function $g:[0,1]arrow$

$R$ , defined by $g(x)= \max\{f(x, y)|0\leq y\leq 1\}$ . Then, $P=NP$ iff for all polynomial-time
computable real functions $f,$ ${\rm Max}(f)$ is polynomial-time computable.

(2) Let Int be the operator that maps a function $f$ : $[0,1]arrow R$ to the function $g:[0,1]arrow R$ ,
defined by $g(x)= \int_{0^{x}}f(t)dt$ . Then, $FP=\# P$ iff for all polynomial-time computable real
functions $f,$ $Int(f)$ is polynomial-time computable.

(3) Let $f$ : $[0,1]arrow[0,1]$ be a polynomial-time computable one-to-one function. Then $F^{-1}$ is
polynomial-time computable. On the other hand, LOGSPACE $=P$ iff for all log-space
computable, one-to-one real functions $f,$ $p-\iota$ is log-space computable.

(4) There exists a polynomial-time computable function $f$ on $[0,1]$ such that the derivative $f’$

exists but is not computable. On the other hand, if the second derivative $f^{u}$ exists and
continuous on $[0,1]$ , then $f’$ must be polynomial-time computable.

(5) There is a natural weak Lipschitz condition on function $f$ : $[0,1]arrow[-1,1]^{2}$ such that
$P=$ PSPACE iff for all first-order ordinary differential equations $y’=f(x, y)$ defined
by polynomial-time computable functions $f$ satisfying this weak Lipschitz condition the
solutions $y$ are polynomial-time computable.

Definitions of terminologies such as LOGSPACE and PSPACE etc. and related
results can be found in Ref.[111].

From these results, it is seen that there exists strong relationship between fundamental
problems of the computational complexity theory and numerical algorithms based on rational
arithmetic. Error bounds and complexity are given for Fourier analysis by Brass[115] and error
bounds of anti-derivatives are given by Refs.[116, 117, 118].

Finally, we note that, based on Urabe’s theorem and rounding by the continued fraction
expansion, we have developed a self-validating simplified Newton method. This method is
implemented by rational arithmetic and avoids exponential explosion of binary digits needed
for expressing intermediate results by rounding. For example, we list a result of solving 5-
dimensional nonlinear equation

$f(x)=(fi(x), \ldots, f_{5}(x))=x$ , (105)
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where
$f_{k}(x)= \frac{(x_{1}^{3}+x_{2}^{3}+\ldots+x_{5}^{3}+\sqrt{5k})}{10}$ . (106)

From this example, the simplified Newton method can well be implemented with rational arith- Table 1
metic and suitable rounding through the continued ffaction expansion. Details will be reported
elsewhere.

4.3 Logical Foundation

Since self-validating numerics based on rational arithmetic is a kind of constructive
mathematics, in this section we briefly discuss a constructive mathematics as the foundation for
approaches described in the previous sections. Constructive mathematics can be developed on
various mathematical foundations. Roughly speaking, they are classified into two types[110].
One is based on the recursive analysis and the other is not. The approaches based on the
recursive analysis are further roughly divided into two classes. The first one is developed in
the framework of classical mathematics. Thus as well as constructive objects, nonconstructive
objects are allowed in $\iota_{s}1is$ class. In this class, the work of Gregorczyk, Lacombe, Mostowski
and Pour-El and Richards[lll] are included[110]. In the other approach, only recursive $0$bjects
are studied by constructive logic. Work by the following author is included in this class[110]:
Moschovakis, Goodstein, Sanin, Ceitin and Aberth. On the other hand, an approach which uses
intuitive logic and does not restrict itself to the notion of recursiveness is further classified into
the following four classes[112]:
(1) classical mathematics framework(CLASS)
(2) Bishop’s constructive mathematics(BISH)
(3) Brouwer’s intuitionism(INT)
(4) Russian constructivism(RUSS).
Roughly speaking, in (2) and (3), the notion of an algorithm, or a finite routine, is taken
as primitive. On the other hand, (4) operates within a fixed progranlming language, and an
algorithm is a sequence of symbols in that language.

In this paper, we have taken the following standpoint. Namely, we adopt a classical
mathematics as the logical foundation, i.e., we allow other than constructive objects, mathe-
matical objects for which we cannot present an algorithm that constructs the objects. Thus, for
instance, the concept of the real number is already given, provided that we know the classical
mathematics. Our objective is to find a finite computational procedure for identifying an ap-
proximation of a mathematical object whose neighborhood is guaranteed to contain the desired
mathematical object. Here, I would like to present a comment. As mentioned in the above-
discussion, recently, several programming languages which support self-validating numerics have
been developed. The fast automatic differentiation program[113, 114, 118] can also be seen as
a kind of language supporting self-validating numerics. Thus, it seems interesting, to define a
programming language which not only supports self-validating numerics, but also becomes a
logical foundation of the mathematics of self-validating numerics.

Now, we would like to present a comment about the relationship between self-validating
numerics and nonlinear functional analysis. As an overview of nonlinear functional analysis, it is



58

noted that Zeidler, Eberhard has written a huge series of books entitled “Nonlinear Functional
Analysis and its Applications” (Springer-Verlag,I (1986), IIA, $B(1990)$ , III(1984), IV(1988)).

The subtitle of each volume is listed as follows:

I Fixed-Point Theorems,

$II/A$ Linear Monotone Operators,

$II/B$ Nonlinear Monotone Operators,

III Variational Methods and optimization,

IV Applications to Mathematical Physics.

The areas indicated by the above list, by considering IV as Applications, are main areas of
nonlinear functional analysis. From the point of view of the principles which are used in analysis,
nonlinear functional analysis can be divided into two areas:

(a) An area which is based on the compactness principle, and

(b) an area in which is the based on the axiom of choice.

Roughly speaking, topics I and II are continued in (a) and topic (III) is in (b). There are,
however, quite a few exceptions. As is seen in the previous section (a) can become constructive.
For example, constructive Sard’s lemma is discussed in Refs. $[119, 120]$ .

On the other $h_{a}nd(b)$ is not constructive at all, so that, for example, BISH adopted
the axiom of countable choice instead of the axiom of choice. A good introduction to computa-
tional functional analysis is given by Moore[121] and an interesting theory of discrete functional
analysis is presented by Zhou[122].

5 Computer Assisted Proofs for Nonlinear Problems

Self-validating numerics has many applications other than to periodic problems of
nonlinear differential equations. In this section, we review such applications.

5.1 Functional Equations

Various functional equations have been solved by the self-validating numerical method.
Some of them habe already been discussed in the previous sections. Although the methods
discussed in the previous sections are based on a posterio $7\dot{2}$ error estimates, many of the self-
validating numerics use interval analysis. In this subsection, we have given an overview of the
application of self-validating numerics to functional equations. Emphasis is on interval analysis.
For introduction of interval analysis, see Refs. $[123]-[126]$ .
(a) Monotone type operator equations: Collatz’s book[127] is now a classic of self-validating
numerics. In this book, mainly monotone operator equations are treated. In 1982, he wrote
a survey paper[128] in which he reviewed a monotone iteration method. Schr\"oder$[129, 130]$
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also treats self-validating numerical methods for monotone-type nonlinear differential equations
including partial differential equations. In Ref.[131], this method is further developed.

Recently, translation of Mikhlin’s book[132] has been published, in which various argu-
ments related to self-validation can be found. In particular, on p.27, a posteriori error estimation
for monotone operator equations is discussed. In this book, an interesting method of opposite
functional is also developed for including solutions to boundary value problems of nonlinear
equations.
(b) Integral equations: In his book[134], Linz described an approximate solution method for
linear operator equations of the second kind, based on, an a poste7riori method. This descrip-
tion includes Anselone’s collectively compact operator approach[135] to Nestrom’s method for
integral equations. Linz’s book is very readable to engineers and gives a good introductive func-
tional analytic basis for error estimation of various approximation methods. Recently, he has
presented a method for determination of precise bounds for inverses of linear integral equations,
which is useful to a posterzori $el\tau or$ estimation[136]. Since the Newton method uses lineariza-
tion, this result is also useful for nonlinear integral equations. Noble[138] also treated a problem
of inclusion of solutions for integral equations. Using Noble’s approach, Spence[137] gave er-
ror bounds for eigenvalues of intergral equations. Related the problems of Linz are discussed
by Sloan[139]. Demme1[140] investigated the relationship between the condition number of a
problem and the shortest distance from that problem to an ill-posed one. For the finite element
method, see for example Ref.[141]. An application is presented of interval integration to the
solution of integral equations by $Ra 1[142]$ .
(c) Differential equations: Inclusion methods of solutions for initial value problems of ordinary
differential equations were surveyed by Nicke1[143] in 1986. In this paper, 123 references rele-
vant to this topic are cited. In Ref.[144], error bounds are given for approximate solutions of
ordinary differential equations using Liapunov functions. In 1987, Lohner[145] presented an en-
closure method for initial value problems of nonlinear ordinary differential equations. Recently,
Stetter[146] developed Lohmer’s method. For partial differential equations Schwandt[133] solved
finite-difference discretizations of Poisson’s equation using the interval Gauss-Seidel method.
Using a monotone iteration process, Voller[147] treated weak nonlinear elliptic boundary value
problems. Nakao[148] has developed a concept of rounding in infinite dimensional spaces and
applied it to partial differential equations. $Plum[149]-[152]$ also presented a computer-assisted
existence proof for nonlinear ellipic boundary value problems.

5.2 Computer-assisted proof for nonlinear problems

In this subsection, we review applications of the self-validating method to nonlinear
problems. Recently, numerical study of nonlinear dynamical systems has made a great stride.
Beyn’s paper[153] is a very good survey on this topic. If a continuous dynamical system is
approximated by a discrete system, then a question “what kind of properties of the original
dynamical system are reflected in the discrete system?” is a fundamental interest. In general,
qualitative properties of a dynamical system are changed by discretization. Thus, the following
question becomes important: Is there an invariant curve for the discrete dynamical system,
which is an approximation of a continuous dynamical system posessing an invariant curve?
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This type of question is studied in Ref.[154]. Related results are cited in Beyn[153]. For
Hamiltonian system the KAM theory is related to such a question. In Ref.[155] various papers
are gathered for comp $X$ ter assisted proofs of analysis. In particular, computer-assisted KAM
theories are presented by several authors. Reference[156] presents a convergence theorem of a
Newton-Moser-type method. In Refs. $[157, 158]$ , a method is given for branch inclusion in a
generic Hopf bifurcation. A computer assisted proof based on interval analysis is given for a
problem related to chaos by Ref.[159].

6 Concluding Remarks

In this paper, the current state of research is surveyed for the study of self-validating
numerical methods of nonlinear problems. In Sect.2, Kantorovich’s approach to this problem is
reviewed. His method is based on his convergence theorem of Newton’s method and can be seen
as an a poste $7\dot{Y}07\dot{Y}$ error estimation method. Then, in Sect.3, Urabe’s approach to this problem
is discussed. He treated practical nonlinear differential equations such as the Van der Pol
equation and the Duffing equation and proved the existence of their periodic and quasi-periodic
solutions using self-validating numerics. Generalizations and abstraction of Urabe’s method to
more general functional equations are also discussed. Then methods for rigorous estimation of
rounding errors are surveyed in Sect.4. First, interval analytic methods are discussed. Then,
an approach of the author which uses rational arithmetic is briefly reviewed. Finally, problems
related to self-validating nunerics are overviewed in Sect.5. Due to the limitation of space, we
cannot discuss many of important studies in this area.

Finally, it is noted that many interesting nonlinear problems show potential for treat-
ment by self-validating numerics, such as

(1) problems related to chaos,

(2) problems related to perturbed soliton systems,

(3) problems related to nonlinear large scale circuits simulations, in which numerical solutions
are difficult to obtain by the effect of rounding errors,

and so on.
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Table 1; Modified Newton Iterations with Guaranteed Accuracy

There is a.solution of Eq.(105) in a ball centered at $x_{k}$ with a radius $\delta_{k}$ .


