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Threshold phenomena for an age-structured epidemic model
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1. Introduction

In the present paper we consider a mathematical model for the
spread of infectious diseases in age-structured populations. The
model is derived for S-I-R type diseases such as measles,
chickenpox, rubella and mumps in a demographically stationary
population. That 1is, the population is composed of three
subpopulations; susceptibles  (S), infetious (I) and recovered
(R). The disease is directly transmitted and a susceptible
individual who contracts the disease will become infective but
will eventually recover with permanent immunity. It is assumed
that the 1latent period is negligibly short, so all of infected
individuals are infectious. Moreover we assume that the
existence of diseases does not increase the death rate of the
population.

The S-I-R type age-independent epidemic model has already
been investigated and its threshold theorem is well Kknown
(Hethcote 1974). Let S(t), I(t) and R(t) be the number of

respectively the susceptible, infectious and immune population at



time t. The simple age-independent S-I-R model is given by the

system of ordinary differential equations

S'(t)=uN-BI(t)S(t)-us(t), (1.1a)
I'(t)=RI(t)S(t)-(y+n)I(t), (1.1b)
R'(t)=yI(t)-uR(t), (1.1c)

where R is the infection rate, p the natural death rate, vy the
recovery rate and N 1is the population size. The threshold

theorem tells us that there exists a threshold value R, such that

the disease-free steady state (S=N, I=R=0) is globally stable if

Ry<1 and there exists only one endemic steady state and it is
globally stable if R,>1. Hence the disease can invade into the

susceptible population if and only if the threshold value exceeds

unity. In epidemiology, the basic reproduction number is defined

as the number of secondary cases of infection produced by one
primary case in a totally susceptible population. In the context
of the simple age-independent S-I-R model, the basic reproduction

number is no other than the threshold value R, given as

D=;§% =(contact rate)x(population size) (1.2)

xX(average infectious period).

The simple model predict that the disease can oscillate
about the endemic equilibrium state but that these fluctuations
will eventually damp down to the equilibrium level. However, in
the real, most reported cases show long-term steady oscillations
about an equilibrium level. For example, it is known that the
number of cases of incidence of measles has a period of two years

{Greenhalgh 1987; Hoppensteadt 1975). This phenomenon suggests
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that the real dynamics of S-I-R diseases could be much more
complex than predicted by the simple model. It is known that the
oscillatory behavior can be explained either by using a stchastic
model or by introducing seasonal variation into the qontact rate.
However another promising way to promote realistic features in

the models is to introduce age-structure, since for many directly

transmitted diseases, the per capita force or rate of infection
tends to vary systematically with age (Anderson 1991). If the
age-structured model /for S-I-R type epidemics allows time-
periodic solutions, it would give an explanation for the

oscillation in the recurrence of measles epidemics.

Note 1.1. For S-I-S type model (that is, there is no immune
class), it has been proved that periodic oscillations do not

occur, even in the age-structured model (Busenberg, et. al 1989).
2. The basic S-I-R type model with age-structure

We subdivide a closed age-structured population into three
compartments containing susceptibles, infectives and immunes. We
assume that the population is in a demographic stationary state
and so the age-density of the population is given by
ra
N(a)=Ba(a), ﬂ(a):=exp(—J0u(n)dd),
where B is the constant birth rate and p(a) is the natural death

rate at age a and 9(a) is the survival rate. Let S(t,a), I(t,a)



and R(t,a) be the age-densities of respectively the susceptible,
infected and immune populations at time t, so that

N(a)=S(t,a)+I(t,a)+R(t,a).
Let RB(a,0)& L:((O,w)x(o,w)) be the age-dependent transmission

coefficient, that is, the probability that a susceptible person
of age a meets an infectious person of age ¢ and becomes infected
per unit of time. Then the age-structured model for S-I-R type

epidemic is described by the system of partial differential

equations

(3t+3a)S(t,a)=—A(t,a)S(t,a)—p(a)s(t,a), (2.1a)

(8t+3a)l(t,a)=A(t,a)S(t,a)—(u(a)+v)I(t,a), (2.1b)

(8t+aa)R(t,a)=fI(t,a)-u(a)R(t,a), (2.1c)

S(t,0)=B, I(t,0)=R(t,0)=0, (2.14)
rw

A(t,a)=J B(a,0)I(ag,t)do, (2.1e)
0

where A(t,a) is the force of infection and w is the life span of
the population.

Existence and uniqueness of solutions for the system (2.1)
can be shown by using semigroup method (Inaba 1990: Webb 1985) or
by inducing the integral equation for I(t,a) (Gripenberg 1983).
Moreover the solution 1is positive with respect to the positive

initial data.

3. The invasion problem
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First let us consider the situation that very small infectious
population invade into a totally susceptible population. In this
initial phase of epidemic, the growth of infecteds is described

by the following linearized equation

w
(3,+3,)1(t,2)N(a)| B(a,0)L(t,0)do-(n(a)+n)I(t,2),  (3.1)
0

I(t,0)=0, I(0,a)=I,(a),
since we can ignore the fact that the density of susceptibles

decreases due to the infection process. Let I{a,T), T&C be the

Laplace transform of I(t,a)
: ,_fm -t
I(a,r).-J e I(t,a)dt. (3.2)
0

It is easily seen that using a priori estimate for I(t,a), the
integral (3.2) exists for t with large real part. From (3.1), we

have
- - rw -
aaI(a,1)=ID(a)—(p(a)+Y+T)I(a,r)+N(a)J B(a,o0)I(0,t)do. (3.3)
0

It is not difficut to write down the expression as

N

a -
I(a,r)=}0e'(T+Y)(a_o)g%g%{lo(o)+N(o)}:B(o,n)I(n,r)dn]do. (3.4)

From (3.4), it follows that

[ : ceror 1o [0 - (ery) (a-n) 2(0)
JOB(a,U)I(G,r)do—(I T.) JoB( ,U)Joe g(n)IO(N)i:?ZB

where the linear operator TT is defined by

u *
(T9)(a):=] @ _(a,m)¥(n)dn, ¢ (a,n):=| Rla,a)N(g)é T {0 g,
° n
(3.6)



Let E:={t & C: I-TT is not invertible}. In the following we

1 1
assume that TT is a compact operator from L (0,w) to L (0,w).

Then it follows that E={t{£C: 1€PU(TT)} (PU(A) denotes the point

spectrum of operator A) and the function t = (I—TT)—1 is
meromorphic in the complex domain. Hence L is a discrete set
whose element are poles of (I—TT)_l'of finite order. Since I-T_

is invertible for T with large real part, there exists a number g
such that the inverse Laplace transform is possible

g+joc
Jr e (a,1)dr. (3.7)

10

I(t,a)=§—,1-'-i—
0]

Therefore we know that the behavior of I(t,a) can be determined
by the method of residues.
Under appropriate conditions, we can expect that E has a

real dominant singuler point t, such that t, ¢€R E, t,>sup{Rer:

T&2-{1,}}. In fact, on the real axis, TT is a positive operator
and its spectral radius r(TT) is decreasing for real 1. From
Krein-Rutman's theoren, r(TT) is an eigenvalue if TT is compact
positive and r(TT)#O. Hence real roots of the equation r(TT)=1
are elements of L. Then if r(TT) is strictly decreasing from +w
to zero, there exists only one real root t, for the equation
r(TT)=1. Making use of its special form of the operator TT and

of positive operator theory, it is possible to show that T, is
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the dominant root. Though we ommit the proof, the following
assumption is sufficient to justify our rough argument (Inaba

1990):
r‘“ -
Assumption 3.1. (1) limheo] {B(a+h,€)—8(a,c)[da=0 uniformly for &
_ 0 > ,
where B=0 for a, L& (-9,0) U(0,w),
(2) There exists a nonnegative function B, (%) such that

B(a,t)2R, (5) for all (a,t) and R 1is positive near to L=w.

Note that the condition (1) implies that TT is compact for all t¢
C. Moreover it follows from the cohdition (2) that for real T,
there exists a strictly positive functional FT and a quasi-
interior point e with respect to:' natural cone Li such that
T $2<F_,¥>e, lim , <F ,e>=+w. Hence we know that T , TER is a

nonsupporting operator in the sense of Sawashima (1964) and the

spectral radius r(TT) is strictly decreasing from +® to zero.
The dominant root t, determines the local stability of the
disease-free steady state of the population, since 1, is the

growth rate of the principal part of I(t,a). .From monotonicity

of r(T ), we obtain that 7,>0 if r(Ty)>1; 714=0 if r(Ty)=1; 14<0

if r(T,)<1. Then we have the threshold criterion: the disease

can invade if r(Ty)>1, whereas it cannot if r(T,)<1. Then r(T,)
can be interpreted as the basic reproduction number R, (Diekmann,

et. al 1990).



Note. 3.2. From (3.6), it follows that r(T,)=Br(S) where the

operator S is given by
W
(sw)(a):=f ¢(a,n)¥(n)dn, ¢(a.n):ff”e(a,o)n(o)e7(° " 49, (3.8)
o n
that is independent of the population size. Since r(T,)=1 if and

only if B=r(S)_1, we know that there exists a critical size N, of

the totally susceptible population such that the disease can

invade if the population size exceeds N,, otherwise the disease

will be eradicated. That is, N, is given by

0

N =r(s) L[
0=T(8)7 | 2(a)da. (3.9)
0

Note 3.3. Let K be the total cone of a Banach space and let K

be the dual cone. A positive linear operator T is called

nonsupporting iff for every pair ¥ & K-{0}, FEK -{0}, there

exists a positive integer p=p{(¥,F) such that <F,an>>0 for all
n2p. If a nonsupporting compact operator T has positive spectral
radius, the Perron-Frobenius type theorem holds (Sawashima 1964;
Marek 1970):

(1) r(T) 1is a point spectrum and is a simple pole of the
resolvent,

{(2) The -eigenspsce corresponding to r(T) is one-dimensional and
the corresponding eigenvector is a quasi-interior point and is a

unique eigenvector in the cone K,
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(3) The eigenspace of the dual operator ™ corresponding to r(T)
is also one-dimensional and is spanned by a strictly positive
functional,

(4) If S and T are nonsupporting and compact with r(T)»0, then

ST, S#T imply that r(S)<r(T).

Note 3.4. From (2.1b) and (3.1), it is easy to see that the
solution I(t,a) of the linearized equation (3.1) is bigger than
the the solution I(t,a) of the nonlinear system (2.1).

Therefore, the 1local stability condition r(To)<1 implies the

global stability of the disease-free steady state of the original

system (2.1).

4. Existence of steady states

Let S(a), I(a) be the steady state solution for the system (2.1).

Then we obtain the expressions

a
S(a)=N(a)exp(—{ A(g)do), (4.1a)
0
a
I(a)=N(a)Jr e‘”a“”x(o)exp(-J’GA(n)dn)da, (4.1b)
0 0

where A(a) is the force of infection at the steady state
W
A(a)=J B(a,0)I(g)do. (4.2)
o
Substituting (4.1) 1into (4.2) and integrating by parts, we have

an equation for A



[ ' r°
A(a)=J ¢0(a.c)x(o)exp(—J A(n)dn)do, (4.3)
o 1]

Let us define a nonlinear positive operator ¢ in Ll(O,w) by
o ° 1
¢(¥)(a):=) ¢°(a,o)¢(d)exp(—J v(n)dn)da, WEL . (4.4)
] 0

Then the solutions of (4.3) correspond to nonnegative fixed

points of the operator ¢. Observe that T, is the majorant of &,

1
Tow—o(w)é;Li-{O} for ¢J614—{0} and the Frechet derivative of ¢ at

¥=0 is given by T,. Then we can prove the following:

Proposition 4.1. Suppose that assumption 3.1. holds. Then there

is no endemic steady state if r(T,)sS1, whereas there exists at

least one endemic steady state if r(T;)>1.

{(proof) If there exists a\UéI:—{O} being a fixed point of ¢,
then W=¢(¥)<T ¥. Let F be the adjoint eigenvector of T
corresponding to r(T,). Taking duality pairing, we have <F,T V-
U>=(r(T,)-1)<F,¥>>0 since T,¥-¥ 1s nonzero positive and F is
strictly positive. Thus r(T,)>1 if there exists an endemic

steady state. This is the proof of the first part of our

proposition. Next suppose that r(T;)>1. First it is observed
that the nonlinear operator ¢ is also compact. Define the subset

2 by 9:={w&]i: Tvil &M} where
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w
M:=sup0sdsws bola,0)da.

0

Then it follows that Q(Li)CZQ. Moreover if we define an operator
. by & (v)=0(v) if vl 2r, & (V)=e(W)+(r-Ivl)y if NVISr where
¢, 1is the positive eigenvector of T, corresponding to r(T,).

Then ¢ . 1is compact and the set Qr:={¢'6li:]IWH SM+rligl } is

invariant under Qr. Since Qr is bounded, convex and closed in

L, @r has a fixed point wr é'Rr (Schauder's principle).

According to Krasnoselskii (1964, Theorem 4.11), using the fact
1
that r(T,)=r(3%[0])>1 and T, does not have eigenvector in L+

corresponding to the eigenvalue one, we can prove that if r is

sufficiently small, the norm of the fixed point wr is greater

than r. That is, ¢ has a positive fixed point.

The next important problem is whether the non-trivial fixed point
of ¢ is unique or not. For this purpose, we introduce a class of

concave operators:

Definition 4.2. (Krasnoselskii 1964) Let K be a cone in a real
Banach space E and < be the partial ordering defined by K. A

positive operator T: K » K is called concave if there exists a wné:

K-{0} that satisfies the following: (1) for any W€ K-{0} there

exist a=a(¥)>0 and B=B(¥)>0 such that oy STYSRY ; (2) T(tw)2tT(V)



for 0StSl and for every WEK such that a(v)u SUSB(W)Y (a(¥)>0,

B(¥)>0).

Lemma 4.3. Suppose that the operator T: K » K is monotone and

concave. If for any WEK satisfying o, ¥, SUSB Y, (o = (¥)>0,
B,=R, (V)>0) and any O<t<l, there exists n=n(¥,t)>0 such that
T(tw)ZtT(¢)+n%,, {(4.5)

then the operator T has at most one positive fixed point.

(proof) Suppose that wlérK—{O} and ¥, £K-{0} are two positive

fixed points of T. From the concavity of T, we can choose

positive constants «, =, (¥,)>0 and B,=8, (¥,)>0 such that

b, =TY, 2o, Yy =0 8_21 R, ¥, &y gzl TV, =a; R21 ¥, .

If we define Kk:=sup{p:¥,2p¥,}, then it follows from the above
inequality that k>0. If we assume that O<k<l, then there exists
n=n(y, ,k)>0 such that
51 &1
b, =Ty, 2T (kY, ) 2KT (Y, ) +n¥; 2ky, +nB™ T(Y, )=(k+ng )& ,

which contradicts the definition of k. Hence we have k21 and

¢, 2¢,. In the same way, we can prove ¥,2¥, . Thus ¥, =y, .

Proposition 4.4. Suppose that for all (a,d)£& [0,w]x[0,w], the
inequality

.
8(2,0)2(0)-v| 8(a,5)9(5)e ¥ (59 arzo, (4.6)
a
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holds. If r(T,)>1, ¢ has only one positive fixed point; that is,

the endemic steady state is unique.

(proof) From Proposition 4.1 and Lemma 4.3, it is sufficient to
show that ¢ 1is a monotonic concave operator satisfying the
condition (4.5). Observe that

w g

% (2,0) (—3)exp (- f v(n)dn)dg
c

o(u) (@)=

0

W (]
=¢(a,0)-JD[B(a,G)N(U)-Yq,(a,o)]exp(—} Y(n)dn)dag.
0

Then the operator ¢ is monotonic under the inequality (4.6).
Next it is easily observed that

a, (W)Y, S0 (V)Se, (W),
where ¥,=1 and

[U

W
al(w):=j f(c)w(o)exp(-J ¥(n)dn)da,
0

0

rU

w
az(w):=5 g(U)W(U)exp(—J Y(n)dn)dag,
o

0

where f(o), g(dg) are defined by

[

J B, (5)N(E)e -Y(E-0) 4

z, g(U):=sup(B]IWN(E)e—Y(;—U)dL.
g

Thus it follows that «,, «, are strictly positive functionals.

Further, if we define

w rﬂ rU
n(w,t):=tjof(0)W( g)exp ( J dn)[exp((l—tU ¥(n)dn)-1]dag,
0



then it is easily seen that & satisfies ¢(t¥)2té(¥)+n. Thus ¢ is

a concave operator satisfying (4.5) with ¥,=1. This completes

the proof.

Note 4.5. The inequality (4.6) holds if B(a,o0)is independent of
the age of infectives d. Further, no matter whether the

inequality (4.6) holds, if B(a,dg) can be factorized as B (a)R, (o)

(the proportionate mixing assumption), there always exists a

unique endemic steady state under the condition r(T,)>1.

5. Discussion

Although we have not so far argued about the stability of the
endemic steady states, the local stability of the endemic steady
states can be analysed by solving the -eigenvalue problem
associated with the linearized equation around the endemic steady
state (the principle of 1linearized stability). Inaba (1990)
proved that if the force of infection X\ at an endemic equilibrium

satisfies the inequality

W W
exp(—JrDA(U)dd)ZYr e‘”“’"’)exp(-J‘OA(n)dn)dc, (5.1)

0 0

then the endemic equilibrium is locally asymptotically stable.
In particuler, it follows that the rate of infection at the
equilibrium 1is sufficiently small, the endemic equilibrium is
locally stable. But it is still an open problem to obtain more

general characterization for the local stability. For example,
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we can guess that the uniqueness of_the endemic equilibrium
implies its stability. Further, we have not yet known conditions
under which the endemic steady state is globally stable.

Thieme (1991) shows that the endemic equilibrium can be
unstable at certain parameter values, if the rate of a
susceptible individual to be infected is independent of its age
but, as for the age of the infective individual, is highly
concentrated in a specific age class. Nevertheless the existence
of periodic solutions 1in case that the endemic equilibrium is
unstable 1is still an unsettled problem. We can also ask whether
more complicated behavior than periodic oscillation can be

generated by a deterministic age-structured S-I-R model.
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