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I . Introduction

We consider a differential inclusion
xe[ (t,x) , x(0)=a ()

defined by a correspondence(=multivalued mapping) [ :[0,T] X
Rt—>R ¢!, where a is a fixed vector in R ¢ . Throughout this
paper, T (t,x) is assumed to be nonempty for all (t,x)e[O,T]
xR 2. A function x:[0,T] — R * is said to be a solution of
(*) if (i ) it is absolutely continuous, (i ) x(t)e[ (t,x(t))
a.e., and (i ) x(0)=a. The set of all the solutioms of (*) is
denoted by A(a).

A lot of works have been devoted to finding out sufficient
conditions which guarantee the existence of solutions for (%)
as well as to examining the structure of solu£ion set. We have
reached at more or less satisfactory results through transparent
reasonings in the case [ is convex-valued (that is, I (t,x) is
convex for all (t,x)e[O0,T]*xR *). However the assumption of
convex-valuedness seems to be quite restrictive because we en-
counter with abundant important situations in which this re-

quirement is not necessarily satisfied. The primary concern of
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this expository article is to illuminate various difficulties

which may arise in the case [ (t,x) is nonconvex.
I . Convex versus Nonconvex

The following standard existence theorem is due to Castaing
[3]. (For the related results, see Filippov [7] [8], Lasota=

Opial [11], and Maruyama [12].)

THEOREM 1 Assume that the correspondence [ :[0,T}xR ¢
~»=>R ! satisfies the following four conditions.

(i) The set [ (t,x) tis nonempty, compact, and convex for
every (t,x)e[O,T]xR ¢.

(i) The correspondence x —[ (t,x) is upper hemi-continu-
ous for each fixed te[0O,T].

(ii ) The correspondence t —=[ (t,x) is measurable for each
fixed xe R ¢.

(v ) [ is L' —tntegrably bounded ; i.e. there exists some
function 1 eL!'([O0,T]),R.) such that

[ (t,x)SSy (t) for all (£,x)e[0,I]XR ¢,

where SU’kt) denotes the closed ball in Rt with center O and
radius P (t).

Then the solution set A (a) of (*) is nonempty for each ace€
R Y. And the correspondence A 'R t—»>C([O0,T],R?) defined
by Atar»A(a) is compact-valued and upper hemi-continuous

with respect to the sup-norm topology.



However the requirements listed in the above theorem are not
necessarily admitted in some typical situations in which differ-
ential inclusions of the form (*)7play an active part. Among
them, the following two problems seem particularly serious.

1. To replace R* by a Banach space of infinite dimension.

2. To remove the assumption that [T is convex-valued.

For the first probrem, see Castaing=Valadier (4], De Blasi=
Pianigiani{5], Maruyama [13], Pianigiani [15], and Tolstonogov
[17].

In this paper, we are concerned with the second obstacle.
Let me exhibit a couple of typical situations in which the con-

vexity of [ (t,x) is not satisfied.

[1] (Optimal Control) A nonempty subset U of R*¢, a
point ae R %, and a function £:{0,T]*R ¢ xR * — R are as-
sumed to be given. Let us consider the problem to find a couple
of a differentiable (in some sense) function x:[0,T] — R *? and
a measurable function u:[{0,T] — R * such that

;c(t) =f(t,x(t),u(t)),

x(0)=a , u(t)el.
In order to find a solution for this problem, we define the cor-
respondence [‘:[O,T]xﬁlf-—>>ﬁii by

[[(t,x)=(f(t,x,u)|ue U).

If there exists a solution x*:[0,I] — R ! for the differential
inclusion

;er(tm), x(0)=a,

then we can also find a suitable measurable function u*:{0,I]
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— R ! such that (x*(-),u*(-)) forms a solution, by making use

of Filippov's measurable implicit function theorem. However the

-correspondence [ can not be assumed to be convex-valued in this

case.

[2] (Implicit Differential Equation) Let £:[0,T]xR xR %
—> R be a given function. Then the implicit differential equa-
tion
£(t,x,x)=0 , x(0)=a
can be reduced to a differential inclusion of the form (%) if we
define the correspondence [ :{0,T]—==R ! by
[(t,x)={yeR*[f(t,x,y)=0).
But the correspondence [° is not necessarily convex-valued in

this case too.
Il . Examples

[A. Existence] Define the correspondence [ :R—>>R by

-sgn X for x#0
fﬂ(x)={ (-1,+1)  for x=0.

X X

(Fig.1) (Fig.2)



Then [ is compact-valued, measurable in t, upper hemi-con-
tinuous in x, and L!'-integrably bounded. But it is not convex-
valued.

In this case, the differential inclusion

xe[ (x) , x(0)=0
does not have a solution. On the other hand, the "relaxed"” dif-
ferential inclusion

xeco[ (x) , x(0)=0

has a solution, say x(t)=0.

[B. Continuous dependence of A (:-) on initial conditions] ( |
Pianigiani [15], P1i§ [16]) Let XcR® be a nonempty bounded
set. Define the correspondnce T :X—>R? by

[ (x,y)={(+1,|x|+Max(sgn(y)- /Ty] » 0)),
(-1, x| +*Max(sgn(y)- /Tyl , 0))}.

Consider the initial value problem:

(Py)  (xy) e[ (x,y) , x(0)=y(0)=0,
that is
xe{-1,+1} , x(0)=0, (1)
y=|x|+Max(sgn(y): V/Ty] , 0) ., y(0)=0. (2)
L= ™
Bl 2>
{ : R \/:\t
I N
-1 L l_ll ‘

(Fig.3) } (Fig.4)
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(Fig.4) depicts a particular solution of (1) which satisfies

i 21i+1
o if ety
n n
x(t)= { , . (3)
2i+ 2i+2
-1 if t 11?51:< ad T
n n
(120,1,2, or e )

We must note that x(t)| can be arbitrarily small as n

ti:rb,T]l

On the other hand, a solution y(t) of (2) is nonnegative for
all te[0,T] since |

| x | +Max(sgn(y)- /Tyl , 0)20 and y(0)=0.
Hence we obtain a simpler relation
y=Ixl+/Y2 /Y (4)

instead of (2). Since the solution of the initial value problem
: §==vf§: y(0)=0 is given by y(t)=t?/4, it follows from (4)
that

2
y(t)z-z— for all te[0,T]. (5)

Now let { g ,) be a sequence of positive numbers which tends
to O. And consider the perturbed initial value problem :

(P.)  (x,y)eT(xy) , x(0)=0, y(0)=-¢,.

The change of the problem from (P,} to (P,) does not influ-

ence the behavior of x(t). If we choose n in (3) so large that

T
0< - < %%f, then we have



| x (t)l<—§f— for all te[0,T]. (6)

Since y,(0)=-¢g ,<0, the set V={te[0,T]|y,.(t)<O0O) is a

neighborhood of O in [0,T]. Taking account of the relation
yalt) =[x, (t)|*Max(sgn(y, (t))- /Ty, (E]1,0) = [x,(t)| on V,
we obtain
€. €.
)=-¢. le )|dss - €, 2T'ts- 5 on V. (7)

This implies that y,(t)<O for all te[O,T].

y

y(t)

(Fig.5)
Thus we conclude that the correspondence A(-,:) is not
upper hemi-continuous because A ((0,-g ,)) is not contained in a

sufficiently small neighborhood of A ((0,0)).

[C. Closedness of A(a)] Define the correspondence I :[0,T]
*R —=R by |
r(c,x)={(-1,+1} , x(0)=0. (8)
Consider the following initial value problem :

xe T (t,x) , x(0)=0. (9)
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(fig.4) in [B] can be regarded as depicting a particular soluti-
on x,(-) of (9) which satisfies (3). Then the sequence {x,} uni-
formly converges to the function x(:)=0 as n— . However the

limit function x(-)=0 is not a solution of (8).

[D. Closedness of reachable sets] (Filippov [6]) Consider
the differential equation :
(x,7)=(-y*+u?,u) (10)
-lgsu(t)s1l , x(0)=y(0)=0.
If we define the correspondence I' i R?-—s>R? by
C(x,y)={(v,w)eR? | v=wt-y?,-lswsl)}, (11)
then the problem (10) can be trasformed into

(x,y) e T (x,y) , x(0)=y(0)=0. (12)

(Fig.6)

Let us examine the reschable set R(l) of (12) at t=1 :
R(1)={(x(1),y(1)) e R* | (x,y) e A((0,0)))}. (13)
If y(t)=0, then u(t)=0 a.e., and hence x(t)=-y?(t)+u?(t)
=0 a.e. Consequently it follows that x(t)=0.
Assume that y(t)#(). Then we must have

x(t)=-yz(t)*u?(t)s1  for all te[O,1] (14)
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and
x(t)<1 on some interval in [O,1]. (15)
Hence (1,0) gR(1).
On the other hand, define the sequence {u,(t)) of functions
exactly in the same manner as the RHS of (3), for the case T=1.
Then the corresponding sequence {((x,,y.)} of solutions of (10)

satisfies

1
Osy.(t)s+
n

. 1 1
x.(t)zl-—3 = x,(l)z1-=.
n

n2
Therefore the sequence {((x,(l),y.(l)} in R(1l) converges to (1,0)

£R(1) as n—oo. This shows that R(1) is not closed.
IV .Basic Theorem for Nonconvex Case

The above examples illuminate the various difficulties
which arise in the case I is not convex-valued. In this case,
we are forced to impose muéh restristive assumptions on T" in
order to obtain a similar result as Theorem 1. One of the basic
theorems for differential inclusions (*) in the nonconvex case

is as follows.

THEOREM 2 (Filippov [7], Kaczyﬁski=01ech [10]) Assume that
the correspondence T':[0,T]xR t—=R ! satisfies the following
four conditions.

i) The set T (t,x) is nonemptly and compact for every
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(t,x)e[O0,I]xR

(i) The correspondence x —»T" (t,X) is continuous in the
Hausdorff metric for each fixed te[0,T].

(i ) The correspondence t = T" {t,X) ts measurable for
each fixed xe R1t.

() I' is Li=integrably bounded by some ® €L, ([0,TI],R,).

Then /\(8) is nonempty for each ae R*.

Furthermore if we replace (i ) by the stronger conditoin
(i ') stated below, them /\(a) is dense (in the sup-norm topo-
logy) in the solution set of

xecoT (t,x) , x(0)=a.

(i ") The function P eL'([O0,TI},R.) appearing in (i )

also satisfies the relation
h(r(t,x), T (t,y))sw(t) I x-yl  for all x,yeR*

where h(-,-) stands for the Hausdorff metric.

The significance of condition (j ') is illuminated by the

following example.

EXAMPLE (Plig [16]) Define the correspondence I':R*—>
R* by |
T (xy)={(+1, x|+ /Tyl) » (-1, Ix]+/Ty])).
And consider a couple of initial value problems as follows :
(P.)  (X.¥)eT(xy) , x(0)=y(0)=0.
(P,)  (X,¥)ecoT (x,y) , x(0), y(0)=0.
It is clear that (x,(t),y.(t))=(0,0) is a solution of (P,),

but it is not a solution of (P,).



Let {((x{-),y(:))) be any solution of (P,). Then x(:) can not
"be identically O on any interval. Hence there exists a sequence
{ty} in [O0,T] such that
t,=>0 as k- ; |x(t,)|#0 for all k.

It is not hard to show that
1
Y(t)zz (t-t,)? for t2t,.
Since t,—+0, we can conclude that
1
yu)zzt’ for t=0.

Hence there .xists no sequence of solutions of (P,) which

uniformly converges to (x,,Yy,).
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