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1. Introduction and Preliminaries

We consider the Turing machine model with a two-way, read-only
input tape and a separate two-way, read-write worktape [5].
Recently, Ranjan, Chang and Hartmanis [6] introduced a slightly

modified Turing machine model, called a 1l-inkdot Turing

machine. The 1-inkdot Turing machine is a Turing machine with
the additional power of marking 1 tape-cell on the input (with
an inkdot). This tape-cell is marked once and for all (no

erasing) and no more than one dot of ink is available. The ac-



tion of the machine depends on the current state, the currently
scanned input and worktape symbols and the presence of the in-
kdot on the currently scanned tape-cell. The action consists of
moving the heads and making appropriate changes on worktape
cells (using the finite control). In addition, the inkdot may
be used to mark the currently scannéd cell on the input tape if
it has not been used already.

A nondeterministic Turing machine M is called strongly
{weakly) L(n) space-bounded if for any n>1 and for any input w
of length n, it uses né more than L(n) worktape cells on w (if
for any n>1 and for any input w of length n accepted by M,
there is an accepting computation of M on w using no more than

L{n) worktape cells). A strongly (weaklyv) L(n) space-bounded

nondeterministic l-inkdot Turing machine is defined similarly.
Let strong-NSPACE[L(n)] {(strong-NSPACE*[L(n)]) denote the
class of languages accepted by strongly L(n) space-bounded non-
deterministic Turing machines (l-inkdot Turing machines), and
let weak-NSPACE[L(n)] (weak-NSPACE*[L(n)]) denote the class of
languages accepted by weakly L(n) space-bounded nondeterminis-
tic Turing machines (l1-inkdot Turing machines).

Ranjan, Chang and Hartmanis [6] left the following open
problem: ‘

strong-NSPACE[loglog n] = strong-NSPACE*[loglog n].?

This problem was solved by Geffert [4], who proved that the
language {a™b" | m# n} is not in strong-NSPACE[o{(log n)]}; Ranjan
et.al.[6] showed that {a®b® | m# q}e strong-NSPACE*[loglog nl.

"The proof of Geffert" is based on space constructibility, and

is valid only for the strong mode of space complexity, because



the language {a®™b" | m#¥ n}€ weak-NSPACE[loglog n] {1,31].

The present paper gives a new, simple proof for solving the
abbve problem, which 1is independent of any space construc-
tibility properties, and which can also be applied to the weak
mode of space complexity. In fact, we prove the following

theorem:

Theorem 1. There is a language T such that
T€ strong-NSPACE* [loglog n] - weak-NSPACE[L(n)],

for any L{n)=o(log n).

Throughout this paper, we assume that logarithms are base 2.

2. Proof

Let T={B(1)#B(2)#...#B(n)cwicwz2c...cwkccw€ {0,1,c,#}* ]| n>2 &
k>1 & (wywi,oo.,wk€ {0,1}*) & | w| (i.e., the length of w)=T
log n1 & we€ {wi,...,wk}}, where for each positive integer i>1,
B(i) denotes the string in {0,1}* that represents the integer i
in binary notation (with no leading zeros).

We first show that T is in strong-NSPACE*[loglog n]. We con-
sider a strongly loglog n space-bounded nondeterministic 1-
inkdot Turing machiné M which acts as follows. Suppose that an
input string

¢ vi#yz#...#ynCcwWwicw2C...CWkCCW$

(where n>2, k>»1, and yi’s, wj’s, w are all in {0,1}*, and ¢



($) is the left (right) endmarker) is presented to M. (Input
strings in the form different form the above can be easily’
rejected by M.) By using the well-known technique (see Problem
10.2 in [5]), M first marks off loglog n worktape cells when
vi=B(i) for each 1<£i<n. (Of course, M enters a rejecting state
if yi# B(i) for some 1<i<n.) M then checks by using 1loglog n
worktape cells that | w| =T log nl1 . After that, M nondeter-
ministically chooses some j (1<j<k), and marks the symbol c
just before wj by the inkdot. M finally checks by using loglog
n worktape cells as a counter that w=wj. M accepts the input
string only if these checks are all successful. It will be ob-
vious that M accepts the language T.

We next show that T is not in weak-NSPACE[o(log n)]}. Suppose,
to the contrary, that T€ weak-NSPACE[L(n)], where L{(n)=o(log
n), and let M be a weakly L(n) space-bounded nondetefministic
Turing machine accepting T. For each n>1, let

V(n)={B(1)#B(2)#...#B(n)yccw| y€ W(n) & we {0,1} 1 log n7 },
where W(n)={cwicwzc...CWn | Wi, 4W2,+0.,Wwn€ {0,1} T l0og n1 } We
consider the computations of M. on the strings in V(n). Let r{(n)
be the length of each element in V{(n). Then r(n)=0(nlog n). A

storage state of M is a combination of the state of the finite

control, the non-blank contents of the worktape, and the
worktape head position. Let C(n) denote the set of all possible
L{(r(n)) space-bounded storage states of M, and let u(n) be the
number of elements of C(n). Then u(n)=sL(r(n))tl(rin)) yhere s
and t are the numbers of states (of the finite control) and
worktape symbols of M, respectively.

Let v, v’ be any two strings in W(n). We say that y and y' are



M-equivalent if for each pair of storage states q,q’€ C(n),

there exists an L{(r(n)) space-bounded computation in which M
enters ¢ B(l)#...#B(n)y in g (from the right) and exits in q’
{to the right) afterwards if and only if there exists an
L{r{(n)) space*bounded computation in which M enters ¢
B(1)#...#B(n)y’ in g and exits in q’. Clearly there are at most
E(n)=2u(n)xu(n) M-equivalence classes. On the other hand there
are at least 2rn-1 different sets of strings from {0,1} 7 log n1
occuring in elements of W(n). From the assumption that
L{n)=o(log n) and from the fact that r(n)=0(nlog n), we have
2r-1 > E(n) for n large enough and there are two M-equivalent
elements y and y’ in W(n) such that there is a string we {0,1}
Nlog n1 ywhich occurs in y but not in y’. Applying now "cut-
and-paste" technique, one can obtain an input which is not in

the language T, but is accepted by M, a contradiction. This

completes the proof of "T€ weak-NSPACE[o(log n)l".

3. Discussions

The demon machines [6] are ordinary L(n) space-bounded Turing
machines having marked off L(n) space on the worktape aﬁ£omati—
cally, at the very beginning of the computation, so that they
do not have to worry about constructing the space needed for
recognition.

The proof in the previous section actually shows that there is

a language T which can be accepted by a strongly loglog n



space-bounded nondeterministic l-inkdot Turing machine but by
no weakly o{log n) space-bounded nondeterministic demon
machine. Thus it shows that

3 T€ strong-NSPACE*[loglog n] - weak-NDEMONSPACE[L(n)],
for any L{n)=o(log n}.

It will be interesting to investigate a relationship between
ASPACE[L(n)] and ASPACE*[L(n)] for any L(n) such that
L{n)>loglog n and L(n)=0o(log n), where ASPACE[L(n)]
(ASPACE* [L(n)]) denotes the class of languages accepted by L(n)
space-bounded alternating Turing machines [2] (L{(n) space-

bounded alternating 1-inkdot Turing machines).
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