
43

根方向型語彙機能文法に基づく構文解析プログラムの実現
An Efficient Parser Based on Frontier-to-Root Lexical-Functional Grammars

山田節夫, 西野哲朗, 米田信夫
Setsuo Yamada, Tetsuro Nishino, and Nobuo Yoneda

東京電機大学理工学部情報科学科
Department of Information Sciences, Tokyo Denki University

Abstract

In 1990, frontier-to-root lexical-functional grammars (FRLFGs for short) were
intoroduced to specify the human language syntax. The class of languages generated
by FRLFGs properly includes the class of context-free languages, and is included
in the class of context-sensitive languages. In this paper, extending the Earley’s
algorithm, we design all efficient parsing algorithm for FRLFG languages.

1 Introduction
In 1965, N. Chomsky introduced transformational grammars (TGs for short) to describe the
syntax of natural languages. It was shown, however, that TGs can generate any recursively
enumerable sets. From this fact, it seems that the generative power of TGs is too strong.
Thus, many grammars whose generative power is weaker than that of TGs have been pro-
posed. In 1982, extending context-free grammars, J. Bresnan and R. M. Kaplan introduced
lexical-fuctional grammars (LFGs for short) as one of such kinds of grammars. But it is
shown by R. C. Berwick that the membership problem for LFGs is NP-hard. Hence, it
seems that LFGs are too complex to deal with on computers. Furthermore, some other
results showing computational intractabilities of LFGs have been proved $[5, 8]$. So, in 1990,
restricting LFGs, T. Nishino introduced frontier-txroot LFGs (FRLFGs for short) [6]. It
is shown that the class of languages generated by FRLFGs properly includes the class of
$context- fi\cdot ee$ languages, and is included in the class of context-sensitive $languages[7]$.

In this paper, we show an efficient parsing algorithm for FRLFG languages, which
consists of the following three algorithms :

(1) An extended Earley’s algorithm;

(2) An f-tree construction algorithm; and

(3) A well-formedness checking algorithm.

The algolithm (1) is used to parse context-free languages. Then, the algorithm (2) con-
structs.f-trees using the $result^{\backslash }\backslash$ of the algorithm (1) and functional assignments attached
to c ontext-free rules. FinaJly, the algorithm (3) tests whether the f-trees constructed by
the algorithm (2) are well-formed.

数理解析研究所講究録
第 790巻 1992年 43-49

44

2 Frontier-to-Root Lexical-Functional Grammars
In this section, we describe the definition of FRLFGs. For details, see $[6, 7]$. For details of
formal laguages and trees, see [3] for example.

2.1 A Formal Definition
Definition 2.1 A frontier-to-root lexical-fuctional grammar (FRLFG for short) G is a
6-tuple ($NA,$ TA, $S,$ $FN,$ $FV,$ AR) consists of 1-6 as follows :

1. NA is a nonterminal alphabet.

2. TA is a terminal alphabet.

3. $S\in NA$ is a start symbol.

4. FN is a $finit\vee$) set of function names.

5. FV is a finite set of function values.

6. AR is a finite set of annotated phrase structure rules.

We assume that $NA\cap TA=\emptyset$ and $FN\cap FV=\emptyset$. An annotated phrase structure rule is
of the form

$Aarrow(B_{1}, E_{1})(B_{2)}E_{2})\cdots(B_{n}, E_{n})$,

where $n\geq 1,$ $A\in NA$, and $B_{i}\in NA\cup TA(1\leq i\leq n)$. If $n\geq 2$, we assume that at least
one of $B_{1},$ $B_{2},$

\ldots , B_{n} is a nonterminal symbol. If $n=1,$ B_{1} may be an empty string ϵ .
Each E_{i} is a set of functional assignments. A functional assignment is a statement of one
of the following forms :

(1) (in the case when $B_{i}\in NA$)

$((\uparrow F_{1})F_{2}):=\downarrow$, $(\uparrow F_{1}):=\downarrow$, $\uparrow:=\downarrow$,

(2) (in the case when B. $\in TA\cup\{\epsilon\}$)

$((\uparrow f_{1}^{\urcorner})F_{2})$ $:=V$, $(\uparrow F_{1})$ $:=V$
)

$\uparrow:=V$,

where $F_{1},$ $F_{2}\in FN$ and $V\in F\ddagger^{\gamma}$. The symbols $Tand\downarrow are$ called metavariables. Especially,
annotated phrase structure rules of the following forms,

$Aarrow(b, E),$ $Aarrow(\epsilon, E)$,

are called a lexical insertion rule and an ϵ-rule respectively, where $b\in TA$ and E is a
nonempty finite set of functional assignments of the forms in (2). We assume that each
set of functional assignments is a singleton except the sets attached to the lexical insertion
rules and the e-rules.

45

For an FRLFG $G=$ ($NA,$ TA, $S,$ $FN,$ $FV,$ AR)) the CFG $Gr=$ ($NA,$ TA, $P,$ S) is called
the underlying context-free grammar of G , where

$P=\{Aarrow B_{1}B_{2}\cdots B_{n}|Aarrow(B_{1}, E_{1})(B_{2}, E_{2})\cdots(B_{n}, E_{n})\in AR\}$.

We call a derivation tree of an underlying CFG of an FRLFG a constituent tree (c-tree
$)$. A tree which is obtained by attaching functional assignments to a c-tree is called an
annotated phrase structure tree. We assume that the underlying CFG is cycle-free.

Now we define f-trees. A functional tree (f-tree) f is a rooted ordered tree which
satisfies the followings:

1. The root of f is labeled by a special symbol $.

2. Each internal node in f apart from the root is labeled by $ or a function name.

3. The leaves of f are labeled by function values.

We assume that each internal node in an annotated phrase structure tree is associated
with an f-tree. A $metavariable\downarrow and\uparrow are$ interpreted as follows :

The metavariable\downarrow attached to a node n represents the f-tree associated to n ; and

The $metavariable\uparrow attached$ to n represents the f-tree associated to the father of n .

For example, a functional assignment of the $form\uparrow:=\downarrow attached$ to n represents that the
f-tree associated to n is concatenated to the f-tree associated to the father of n .

Now, we describe how to synthesize the f-tree assigned to a string x . This f-tree is
denoted by $f(x)$, and associated to the root of an annotated phrase structure tree t for a
string x . Traversing t in depth-first left-to-right order, functional assignments are evaluated
at each node. Let X_{0} be a node in t labeled by A and expanded by an annotated phrase
structure rule of the form

p : $Aarrow(B_{1}, E_{1})(B_{2}, E_{2})\cdots(B_{n}, E_{n})$.

The f-tree associated to X_{0} (represented by \uparrow metavariables appearing in $E_{i},$ $1\leq i\leq n$)
is synthesized by performing all tree concatenations expressed by functional assignments
in $\bigcup_{i=1}^{n}E_{i}$. Because t is traversed in depth-first left-to-right order, we can assume that
before \uparrow is evaluated, all values of\downarrow appearing in $\bigcup_{i=1}^{n}E_{i}$ have already been evaluated. An
initial value $of\uparrow is$ a tree which consists of only one node labeled by $. If p is a lexical
insertion rule or an e-rule, the functional assignments in E_{1} can be evaluated in any order.
Otherwise, the only one functional assignment in E_{1} is firstly evaluated. Secondly, the
only one functional assignment in E_{2} is evaluated. And this process is repeated until the
functional assignment in E_{n} is evaluated.

2.2 A Membership Procedure for the FRLFG Languages
In Fig. 1, we show a procedure for the FRLFG membership. Here, we define well-formedness
conditions for an f-tree $f(x)$ as the following three conditions:

1. uniqueness,

2. completeness, and

46

an input $st\ulcorner ingx$

\downarrow

Is there an annotated
no

Figure 1: Λ proce’J ure for thc FRLFG membership.

3. $cohere\uparrow\iota cy$.

In order to define these t.hree condit.ions, $\backslash \backslash \prime e$ need some $ter\iota 11i$ nologies. Λ $-free- tree corre-
spo nding to an $f- t\uparrow\cdot eef$ is an f-tree obtained by $rel\mathfrak{n}OVing$ all int.ernal nodes of f , excepting
the root of f , whose labeles are $. A node $?t$ is a 1) $re-$ terminal node if $\uparrow\iota$ is an internal node
and has at least t le leaf as a son.

Definition 2.2 Let $f’$ be the $-free-t.ree corresponding to an f-tree f . The three well-
formedness conditions are defined as follows:

1. An f-tree f is said to be unique $if_{1}f’coItsis$ tently represents a function.

2. An f-tree f is said to be complete if, for (
$\backslash .r\iota\subset\urcorner\iota\cdot 1\supset il.\iota\cdot ary$ node ?1 in $f’$ labeled by PRED

$(PRED\in FN)$, the $follo\backslash vi_{1}\iota g$ condit.io]] holds : rvhen $t1_{1}e$ unique son of $?$? is labeled
lay I

$(\Lambda_{1}, \ldots , \Lambda_{k})$, each $\Lambda;(1\leq i\leq k)$ is equal to a $lal\supset cl$ of some $\uparrow\tau’ s|_{\dot{j}}$ rother which is
not neither a pre-terminal node nor a leaf.

3. An f-tree f is said to be coherent if, for an $a.1^{\cdot}1_{\dot{J}}$itrary node $\uparrow\tau$ in $f’$ labeled by PRED
$(PRED\in\Gamma’N)$, the $follo\backslash ving$ condition holds : when the unique son of n is labeled
by $p(A_{1}, \ldots , A_{k})$, each label of an $n’ s$ brother which is not neither a pre-terminal
node nor a leaf is equal to A ; for some $i,$ $1\leq i\leq k$.

A terminal string x is $gra\uparrow?$)matical only if it $ha_{\backslash }^{\epsilon_{i}}$ a valid annotated plirase structure tree
(
$\urcorner.11d$ it is assigned a well-formed f-tree $f(x)$. A language $/cene\uparrow\cdot ated$ by $a\uparrow$? FRLFG G , denoted
by $L(G)$, is a set of grammatical strings of G. Notice tltat if the underlying CFG of G is
$aml)iguous$, in order to decide whetheI $X\in L(G),$ $\backslash ve$ needed t,o check the $\backslash vell- forll$)$edt\iota ess$ of
f-trees for all cTt) $not_{t}\backslash .tec1$ plrrase structure trees of x in general. In t.his case, if x is assigned
at least one well-formed f-tree $f(x)$, then $x\in L(G)$.

The $follo\backslash vi_{1}\iota g$ theorem is $k_{I}\iota 0\backslash vI1$ conccrning thc generative $po\backslash ver$ of FRLFGs.

47

Theorem 2.1 [7] $CFL\subset \mathcal{L}_{FRLFG}7\subseteq CSL$
\square

Here, CFL denotes the class of context-free languages, CSL denotes the class of context-
sensitive languages, and \mathcal{L}_{FRLFG} denotes the class of languages generated by FRLFGs.
The following theorem is known concerning the complexity of the parsing problem for the
FRLFG languages.

Theorem 2.2 [7] Let G be an $FRLFG_{2}x$ be a terminal string with $|x|=n$, and Gr be
the underlying CFG of G. Here, $|x|$ denotes the length of the string x ,

1. If Gr is ambiguous, there is an algorithm deciding whether $x\in L(G)$ and if so,
generating all different annotated phrase structure trees and f-trees for x in $O(n^{3}+$

$d(x, Gr)\cdot n^{2})$ time, where $d(x, Gr)$ denotes the number of the different derivation trees
for x , called degree of ambiguity.

2. If Gr is unambiguous, there is an algorithm deciding whether $x\in L(G)$ and if so,
generating the unique annotated phrase structure tree and f-tree for x in $O(n^{2})$ time.

口

It is known that, for any x and $Gr,$ $d(x, Gr)$ is decidable using formal power series [9].
Note that $d(x, Gr)$ may be a function of $|x|$.

3 A Parsing Algorithm for the FRLFG Languages
In this section, we show an efficient parsing algorithm for the FRLFG languages, which
consists of the next three algorithms : (1) an extended Earley’s algorithm; (2) an f-tree
construction algorithm; and (3) a well-formedness checking algorithm. The algorithm (1)
is used to parse context-free languages. Then, the algorithm (2) constructs f-trees using
the results of the algorithm (1) and functional assignments attached to context-free rules.
Finally, the algorithm (3) tests whether the f-trees constructed by the aJgorithm (2) are
well-formed. In Fig. 2, we show our parsing algorithm for the FRLFG languages.

3.1 An Extended Earley’s Algorithm
It is well known that the Earley’s algorithm is an efficient parsing algorithm for the context-
free languages [1, 2, 4]. Since the Earley’s algorithm is not designed to generate all deriva-
tion trees for an $i\vee..put$ string, we modified the Earley’s algorithm to generate $al1$ derivation
trees for every input string.

It can be shown that, for any string w , the number of derivations for w is finite if G is
cycle-free, even when G includes e-rules. Namely, we can prove the following theorem.

Theorem 3.1 Let G be a CFG including ϵ-rules. If G is cycle-free, for an arbitrary
$st\tau ingw$, the number of derivations for w in G is finite. \square

Let Γ be a set of production names or an empty string e . An extended Earley’s algorithm
constructs extended parse lists $I_{0},$

$\ldots,$
I_{n} in this order, where $n\geq 1$ is the length of an input

string. For each $j(0\leq j\leq n)$, an element of I_{j} is of the following form:
$([Aarrow\alpha\cdot\beta, i], D)$,

where, $A\in NA,$ $\alpha,$ $\beta\in(NA\cup TA)^{*},$ $D\subseteq\Gamma$ “, and $0\leq i\leq j$. This algorithm records
necessary information in extended parse lists, in order to generate all derivation trees for
an input string if any.

48

Figure 2: A parsing ($\backslash .1go1^{\cdot}il1_{tl}n$ for FRLFG languages.

3.2 An F-tree Construction Algorithm
Le t us ass ume that an element $([Sarrow\alpha\cdot, 0], D)$ is recorded in $tl\iota e$ n-th extended parse list
by the extended Earley’s algoritbm, where

n is the length of an input string $(?\tau\geq 1)$,

S is a start symbol,

$c\iota’\in(T\Lambda\cup N\Lambda)^{*}$,

$Sarrow\alpha\in P,$ $aI\iota d$

$D\subseteq\Gamma^{+}$.

Using elements of D and $fuI\iota ct,i_{01t_{(\urcorner}}.1$ assignments, {, his algorithni $eva1n_{c}\backslash tes$ functional assign-
lnents at each node by traversing an annotat.ed phrase structure tree in preorder (top-down
left-to-right order), and constructs f-trees for $al1$ c-trees.

4 Conclusion
In this paper, we have shown an eflicient parsing algorithm for FRLFG languages. We
$1\iota_{\mathfrak{c}}\backslash ve$ also implemented $tl\iota is$ algoritbm by using C programming language. In order to parse
sentences efficiently, it is necessary to clccrea.se the degree of ambiguity as much as possible.

49

References
[1] Aho, A. V., and Ullman, J. D., The Theory of Parsing, Translation, and Compiling,

Prentice-Hall Inc., Englewood Cliffs (1972).

[2] Aho, A. V., Sethi, R., and Ullman, J. D., Compilers, Addison-Wesley Publishing
(1986).

[3] Hopcroft, J. E., and Ullman, J. D., Introduction to Automata Theory, Languages, and
Computation, Addison-Wesley (1979).

[4] Moll, R. N., Arbib, M. A., and Kfoury, $A’$. J., An Introduction to Formal Language
Theory, Springer-Verlag (1988).

[5] 中西隆一, 関浩之, 嵩忠雄,「語彙機能文法の生成能力にっいて」, 91夏の LA シンポ

ジウム資料 (1991).

[6] Nishino, T., $\backslash n$ efficiently Parsable and Learnable Subclass of Lexical Functional
Grammars, IEICE Technical Report, 90:25, pp.55-64 (1990).

[7] Nishino, T., Formal Methods in Natural Languages Syntax, Doctoral Dissertation,
Waseda U niversity (1991).

[8] Nishino, T., Shimizu, N., Yamada, S., and Yaku, T., On Normal Forms and Decision
Problem for Lexical-Functional Grammars, IEICE Technical Report, 90:93, pp.21-32
(1991).

[9] R\’ev\’esz, Introduction to Formal Languages, McGraw-Hill Book Company(1983).

