goooboooogn 43
0 7900 19920 43-49

R R ERBREEICEISHUEI 707 7 LDRB

An Efficient Parser Based on Frontier-to-Root Lexical-Functional Grammars

IR, EEHEN, KHEX

Setsuo Yamada, Tetsuro Nishino, and Nobuo Yoneda

HWEERATE BEITHEE HHRFs

Department of Information Sciences, Tokyo Denki University

Abstract

In 1990, frontier-to-root lexical-functional grammars (FRLFGs for short) were
intoroduced to specify the human language syntax. The class of languages generated
by FRLFGs properly includes the class of context-free languages, and is included
in the class of context-sensitive languages. In this paper, extending the Earley’s
algorithm, we design an efficient parsing algorithm for FRLFG languages.

1 Introduction

In 1965, N. Chomsky introduced transformational grammars (TGs for short) to describe the
syntax of natural languages. It was shown, however, that T'Gs can generate any recursively
enumerable sets. From this fact, it seems that the generative power of TGs is too strong.
Thus, many grammars whose generative power is weaker than that of TGs have been pro-
posed. In 1982, extending context-free grammars, J. Bresnan and R. M. Kaplan introduced
lexical-fuctional grammars (LFGs for short) as one of such kinds of grammars. But it is
shown by R.C.Berwick that the membership problem for LFGs is NP-hard. Hence, it
seems that LFGs are too complex to deal with on computers. Furthermore, some other
results showing computational intractabilities of LFGs have been proved [5, 8]. So, in 1990,
restricting LFGs, T. Nishino introduced frontier-to-root LFGs (FRLFGs for short) [6]. It
is shown that the class of languages generated by FRLFGs properly includes the class of
context-free languages, and is included in the class of context-sensitive languages [7].

In this paper, we show an efficient parsing algorithm for FRLFG languages, which
consists of the following three algorithms :

(1) An extended Earley’s algorithm;
(2) An f-tree construction algorithm; and
(3) A well-formedness checking algorithm.

The algorithm (1) is used to parse context-free languages. Then, the algorithm (2) con-
structs.f-trees using the results of the algorithm (1) and functional assignments attached
to context-free rules. Finally, the algorithm (3) tests whether the f-trees constructed by
the algorithm (2) are well-formed.

2 Frontier-to-Root Lexical-Functional Grammars

In this section, we describe the definition of FRLFGs. For details, see [6, 7). For details of
formal laguages and trees, see [3] for example.

2.1 A Formal Definition

Definition 2.1 A frontier-to-root lezical-fuctional grammar (FRLFG for short) G is a
6-tuple (NA,TA, S, FN, FV, AR) consists of 1-6 as follows :

1. NAis a nonterminal alphabet.

2. TAis a terminal alphabet.

3. S€ NAis a start symbol.

4. FN is a finii: set of function names.

5. FV is a finite set of function values.

6. AR is a finite set of annotated phrase structure rules.

We assume that NANTA =0 and FNNFV = . An annotated phrase structure rule is
of the form
A— (Bl) El)(BZa EZ) te (Bm En)>

wheren > 1, A€ NA, and B, e NAUTA (1 <i<n). lf n>2, we assume that at least
one of By, By,..., B, is a nonterminal symbol. If n = 1, B; may be an empty string e.
Each F; is a set of functional assignments. A functional assignment is a statement of one
of the following forms :

(1) (in the case when B; € NA)
((T FI)FZ) :=l) (T Fl) :=l) Tizl,
(2) (in the case when B; € TAU {¢})

((T Fl)Fz) = V) (T Fl) = V: T:“: V1

where Fy, F; € FN and V € FV. The symbols | and | are called metavariables. Especially,

annotated phrase structure rules of the following forms,
A— (bE), A— (¢, E),

are called a lexical insertion rule and an e-rule respectively, where b € TA and E is a
nonempty finite set of functional assignments of the forms in (2). We assume that each
set of functional assignments is a singleton except the sets attached to the lexical insertion
rules and the e-rules.

For an FRLFG G = (NA,TA,S,FN,FV, AR), the CFG Gr = (NA,TA, P, S) is called
the underlying context-free grammar of G, where

P = {A — B]Bg © Bn I A— (Bl,El)(Bg, Eg) o (Bn,En) (S AR}

We call a derivation tree of an underlying CFG of an FRLFG a constituent tree (c-tree
). A tree which is obtained by attaching functional assignments to a c-tree is called an
annotated phrase structure tree. We assume that the underlying CFG is cycle-free.

Now we define f-trees. A functional tree (firee) f is a rooted ordered tree which
satisfies the followings :

1. The root of f is labeled by a special symbol $.
2. Each internal node in f apart from the root is labeled by $ or a function name.
3. The leaves of f are labeled by function values.

We assume that each internal node in an annotated phrase structure tree is associated
with an f-tree. A metavariable | and | are interpreted as follows :

The metavariable | attached to a node n represents the f-tree associated to n; and
The metavariable T attached to n represents the f-tree associated to the father of n.

For example, a functional assignment of the form T:=] attached to n represents that the
f-tree associated to n is concatenated to the f-tree associated to the father of n.

Now, we describe how to synthesize the f-tree assigned to a string z. This f-tree is
denoted by f(z), and associated to the root of an annotated phrase structure tree ¢ for a
string z. Traversing ¢ in depth-first left-to-right order, functional assignments are evaluated
at each node. Let Xy be a node in ¢ labeled by A and expanded by an annotated phrase
structure rule of the form

pb: A - (-Bl) El)(Bzy EZ) v (-Bn; En)~

The f-tree associated to X, (represented by | metavariables appearing in E;, 1 <1 < n)
is synthesized by performing all tree concatenations expressed by functional assignments
in U=; Bi. Because t is traversed in depth-first left-to-right order, we can assume that
before T is evaluated, all values of | appearing in -, E; have already been evaluated. An
initial value of T is a tree which consists of only one node labeled by $. If p is a lexical
insertion rule or an e-rule, the functional assignments in E; can be evaluated in any order.
Otherwise, the only one functional assignment in E} is firstly evaluated. Secondly, the
only one functional assignment in F, is evaluated. And this process is repeated until the
functional assignment in E, is evaluated.

2.2 A Membership Procedure for the FRLFG Languages

In Fig. 1, we show a procedure for the FRLFG membership. Here, we define well-formedness
conditions for an f-tree f(z) as the following three conditions :

1. uniqueness,

2. completeness, and

45

46

an input string x

|

Is there an annotated

phrase structure tree?

yes l’

the corresponding f-tree f(x) <—

|

Is f(x) well-formed?

yes
yes N\
x €L(G) Is there another

annotated phrase

structure tree for x?

l,no

x & L(G)

Figure 1: A procedure for the FRLFG membership.

3. coherency.

In order to define these three conditions, we need some terminologies. A $-free-tree corre-
sponding to an f-tree fis an {-tree obtained by removing all internal nodes of f, excepting
the root of f, whose labeles are §. A node n is a pre-terminal node if 12 is an internal node
and has at least « 1e Jeaf as a son.

Definition 2.2 Let f' be the $-frec-tree corresponding to an {-tree f. The three well-
formedness conditions are defined as follows :

1. An f-tree f is said to be unique if, f' consistently represents a function.

2. An f-tree f is said to be complete if, for an arbitrary node n in f' labeled by PRED
(PRED € I'N), the following condition holds : when the unique son of n is labeled
by p(A1, ..., Ay), each A;(1 < i < k) is equal Lo a label of some n’s brother which is
not neither a pre-terminal node nor a leaf.

3. An f-tree f is said to be coherent if, for an arbitrary node n in f' labeled by PRED
(PRED € I'N), the following condition holds : when the unique son of n is labeled
by p(Aj,..., Ax), each label of an n’s brother which is not neither a pre-terminal
node nor a leaf is equal to A4; for some 7, 1 <1 < k. '

A terminal string « is grammatical only if it has a valid annotated phrase structure tree
and it is assigned a well-formed {-tree f(2). A language generated by an FRLFG G, denoted
by L(G), is a set of grammatical strings of G. Notice that if the underlying CI'G of G is
ambiguous, in order to decide whether z € L(G), we needed to check the well-formedness of
{-trees for all annotated phrase structure trees of z in general. In this case, if z is assigned
at least one well-formed f-tree f(z), then z € L(G).

The following theorem is known concerning the generative power of FRLI'Gs.

Theorem 2.1 [7] CFL gEFRLFG g CSL 0

Here, C F L denotes the class of context-free languages, C.SL denotes the class of context-
sensitive languages, and Lpprrc denotes the class of languages generated by FRLFGs.

The following theorem is known concerning the complexity of the parsing problem for the
FRLFG languages.

Theorem 2.2 [7] Let G be an FRLFG, z be a terminal string with |z| = n, and Gr be
the underlying CFG of G. Here, |z| denotes the length of the string z.

1. If Gr is ambiguous, there ts an algorithm deciding whether z € L(G) and if so,
generating all different annotated phrase structure trees and f-trees for z in O(n® +
d(z, Gr)-n?) time, where d(z, Gr) denotes the number of the different derivation trees
for z, called degree of ambiguity.

2. If Gr is unambiguous, there is an algorithm deciding whether z € L(G) and if so,

generating the unique annotated phrase structure tree and f-tree for z in O(n?) time.
O

It is known that, for any z and Gr, d(z, Gr) is decidable using formal power series [9].
Note that d(z, Gr) may be a function of |z|.

3 A Parsing Algorithm for the FRLFG Languages

In this section, we show an efficient parsing algorithm for the FRLFG languages, which
consists of the next three algorithms : (1) an extended Earley’s algorithm; (2) an f-tree
construction algorithm; and (3) a well-formedness checking algorithm. The algorithm (1)
is used to parse context-free languages. Then, the algorithm (2) constructs f-trees using
the results of the algorithm (1) and functional assignments attached to context-free rules.
Finally, the algorithm (3) tests whether the f-trees constructed by the algorithm (2) are
well-formed. In Fig. 2, we show our parsing algorithm for the FRLFG languages.

3.1 An Extended Earley’s Algorithm

It is well known that the Earley’s algorithm is an efficient parsing algorithm for the context-
free languages [1, 2, 4]. Since the Earley’s algorithm is not designed to generate all deriva-
tion trees for an ir.put string, we modified the Earley’s algorithm to generate all derivation
trees for every input string.

It can be shown that, for any string w, the number of derivations for w is finite if G is
cycle-free, even when G includes e-rules. Namely, we can prove the following theorem.

Theorem 3.1 Let G be a CFG including e-rules. If G 1s cycle-free, for an arbitrary
string w, the number of derivations for w in G is finite. m]

Let T be a set of production names or an empty string . An extended Earley’s algorithm
constructs extended parse lists Iy, . .., I, in this order, where n > 1 is the length of an input
string. For each j (0 < j < n), an element of [; is of the following form:

([A’_)a'ﬁai])D))
where, A € NA, o, € (NAUTA)*, D CT* and 0 < ¢ < j. This algorithm records

necessary information in extended parse lists, in order to generate all derivation trees for
an input string if any.

47

48

an input string x

|

an extended Earley's algorithm

]

extended parse lists

c-trees?

Are there | 4

‘__l yes

an f-tree construction algorithm

|

f-trees for

all c-trees

}

yes

Is there

an f-tree?

Too

a well-formed checking algorithm

no

iyes

x €L(6)

x € L(G)

Figure 2: A parsing algorithm for FRLFG languages.

3.2 An F-tree Construction Algorithm

Let us assume that an element ([S — a-,0], D) is recorded in the n-th extended parse list

by the extended Earley’s algorithm, where

n is the length of an input string (n > 1),

S is a start symbol,
a € (TAUNA),
S— o€ P, and
DCTH.

Using elements of D and functional assignments, this algorithm evaluates functional assign-
ments at each node by traversing an annotated phrase structure tree in preorder (top-down
left-to-right order), and constructs f-trees for all c-trees.

4 Conclusion

In this paper, we have shown an eflicient parsing algorithm for FRLI'G languages. We
have also implemented this algorithm by using C programming language. In order to parse
sentences efficiently, it is necessary to decrease the degree of ambiguity as much as possible.

References

[1] Aho, A. V., and Ullman, J. D., The Theory of Parsing, Translation, and Compiling,
Prentice-Hall Inc., Englewood Cliffs (1972).

[2] Aho, A. V., Sethi, R., and Ullman, J. D., Compilers, Addison-Wesley Publishing
(1986).

[3] Hopcroft, J. E., and Ullman, J. D., Introduction to Automata Theory, Languages, and
Computation, Addison-Wesley (1979).

[4] Moll, R. N., Arbib, M. A., and Kfoury, A. J., An Introduction to Formal Language
Theory, Springer-Verlag (1988).

[5] dfErE—, B, BEE IEEREXEOERENC2PWVWT], 91 E0 LA v v ¥
v v s &R (1991).

[6] Nishino, T., in efficiently Parsable and Learnable Subclass of Lexical Functional
Grammars, [EICE Technical Report, 90:25, pp.55-64 (1990).

[7] Nishino, T., Formal Methods in Natural Languages Syntaz, Doctoral Dissertation,
Waseda University (1991). .

[8] Nishino, T., Shimizu, N., Yamada, S., and Yaku, T., On Normal Forms and Decision
Problem for Lexical-Functional Grammars, IEICE Technical Report, 90:93, pp.21-32
(1991).

[9] Révész, Introduction to Formal Languages, McGraw-Hill Book Company(1983).

49

