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1 Introduction
The normalizing reduction strategies of reduction systems, such as leftmost-outermost evaluation
of lambda calculus, combinatory logic, ordinal recursive program schemata and left-normal term
rewriting systems, guarantee a safe evaluation which reduces a given expression to its normal form
whenever possible [2, 5, 6, 8].

Strong sequentiality formalized by Huet and L\’evy [3] is a well-known practical criterion guar-
anteeing an efficiently computable normalizing reduction strategy for orthogonal (i.e., left-linear
and non-overlapping) term rewriting systems. They showed that for every strongly sequential
orthogonal term rewriting system, index reduction is a normalizing strategy, that is, by rewriting
a redex called an index at each step, every reduction starting with a term having a normal form
eventually terminates at the normal from. Here, the index is defined as a needed redex concerning
an approximation of $R$ which is obtained by analyzing the left-hand sides alone of the rewriting
rules of term rewriting systems. Moreover, Huet and L\’evy [3] showed the decidability of strong
sequentiality.

Extensions of strong sequentiality have been reported by [7, 9, 10]. Thatte [10] introduced
left sequentiality. and showed the equivalence of strong sequentiality and left sequentiality for the
class of orthogonal constructor systems. Oyamaguchi [9] introduced sufficient sequentiality not
only based on the analysis the left-hand sides of the rewriting rules of term rewriting systems but
also on the non-variable parts of the right-hand sides. He showed that the notion of sufficient
sequentiality properly extends the notion of strong sequentiality. Klop and Middeldorp [7] pre-
sented a simple prooI of the decidability of strong sequentiality and compared these extensions of
strong sequentiality. However, all these results are restricted to orthogonal term rewriting systems;
hence, they cannot be applied to term rewriting systems with overlapping rules such as

$\{pred(succ(x))succ(pred(x))arrow xarrow x$

Concerning overlapping term rewriting systems, Kennway [5] proved the surprising fact that
every weakly orthogonal term rewriting system has a computable normalizing strategy. How-
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ever, the weak orthogonality in [5] is restricted to root overlapping rules such as pamllel-or, i.e.,
or(true, $x$ ) $arrow trueaIldor(x, true)arrow true$ . Thus, his result cannot be applied to the above non-
root overlapping situation. Moreover, the algorithm proposed in [5] is too complicated to find a
needed redex effectively.

In this paper, we extend the result by Huet and L\’evy to overlapping term rewriting systems.
The notions of index and strong sequentiality are naturally extended to the overlapping situation.
Under these extensions, we show that index reduction is normalizing for the class of strongly
sequential balanced ambiguous term rewriting systems. The balanced ambiguous term rewriting
system is defined as a left-linear term rewriting system in which every critical pair can be joined
with the root balanced reductions. We also show that this class includes all weakly orthogonal
left-normal systems (not being restricted to root overlapping rules), for which leftmost-outermost
reduction strategy is normalizing. For example, leftmost-outermost reduction strategy is normal-
izing for combinatory logic CL $+$ { $p\uparrow ed\cdot$ (succ $\cdot x)arrow x_{)}$ succ $\cdot$ (pred $\cdot x)arrow x$ }. Moreover, our
result can be applied to term rewriting systems not having the Church-Rosser property too. For
example, leftmost-outermost reduction strategy is again normalizing for $CL+$

$\{\begin{array}{l}(I\zeta B)y(K\cdot.A)\cdot.yarrow(K\cdot.Barrow(KA)_{y}^{y}Aarrow ABarrow B\end{array}$

though the system is not Church-Rosser since $(K\cdot A)\cdot y$ can be reduced into two terms $A$ and $B$

which cannot be joined.

2 Reduction Systems
Assuming that the reader is familiar with the basic concepts and notations concerning reduction
systems in $[4, 6]$ , we briefly explain notations and definitions.

A reduction system (or an abstract reduction system) is a structure $A=\{D,$ $arrow$ ) consisting of
some set $D$ and some binary $relationarrow onD$ (i.e., $arrow\subseteq D\cross D$ ), called a reduction relation. A
reduction (starting with $x_{0}$ ) in $A$ is a finite or infinite sequence $x_{0}arrow x_{1}arrow x_{2}arrow\cdots$ . The identity
of elements $x,$ $y$ of $D$ is denoted by $x\equiv y$ . $arrow\overline{=}$ is the reflexive closure $ofarrow,$ $rightarrow is$ the symmetric
closure $ofarrow,$

$arrow+$ is the transitive closure $ofarrow,$ $arrow^{*}$ is the transitive reflexive closure $ofarrow$ and
$=$ is the equivalence relation generated $byarrow(i.e.$ , the transitive reflexive symnietric closure of
$arrow)$ . $arrow m$ denotes a reduction of $m(m\geq 0)$ steps. If $x\in D$ is minimal with respect $toarrow$ i.e.,
$\neg\exists y\in D[xarrow y]$ , then we say that $x$ is a normal form; let $NF$ be the set of normal forms. If
$xarrow^{*}y$ and $y\in NF\dagger^{\uparrow\backslash _{A}}en$ we say $x$ has a normal form $y$ and $y$ is a normal form of $x$ .

Definition 2.1 $A=(D,$ $arrow\rangle$ is strongly normalizing (or teminating) iff every reduction in $A$

terminates, $i.e.$ , there is no infinite sequence $x_{0}arrow x_{1}arrow x_{2}arrow\cdots$

Definition 2.2 $A=(D_{*},$
$arrow\rangle$ is Church-Rosser (or confluent) iff

$\forall x,$ $y,z\in D$ [ $xarrow^{*}y\wedge xarrow z\Rightarrow\exists w\in A,$ $yarrow^{*}w\wedge z$ 為\rightarrow w].

Definition 2.3 $A=\{D,$ $arrow$ ) is weakly Church-Rosser (or weakly confluent) iff
$\forall x,$ $y,$ $z\in D[xarrow y\wedge xarrow z\Rightarrow\exists w\in A, yarrow^{*}w\wedge zarrow^{*}w]$ .

The following propositions are well known $[4, 6]$ .

Proposition 2.4 Let $A$ be Church-Rosser, then,

(1) $\forall x,$ $y\in D[x=y\Rightarrow\exists w\in D, xarrow^{*}w\wedge y ; w]$ ,



210

(2) $\forall x,$ $y\in NF[x=y\Rightarrow x\equiv y]$ ,

(3) $\forall x\in D\forall y\in NF[x=y\Rightarrow xarrow^{*}y]$ .

Definition 2.5 (Reduction Strategy) Let $A=\{D, arrow\}$ and $letarrow s$ be a subrelation $ofarrow+(i.e$ .,

if $xarrow ys$ then $xarrow+y$) such that a normal form concerning $arrow_{S}$ is also a normal form $concerningarrow$

($i.e.$ , two binary relations $arrow_{S}andarrow have$ the same domain). Then, we say $thatarrow s$ is a reduction
strategy for $A$ (or $forarrow$). $Ifarrow s$ is a subrelation $ofarrow then$ we call it $a$ one step reduction strategy;
$otherwisearrow is$ called a many step reduction strategy.

Definition 2.6 (Normalizing Strategy) A reduction $stmtegyarrow s$ is normalizing iff for each $x$

having a normal form $concemingarrow$ there exists no infinite sequence $x\equiv x_{0}arrow x_{1}sarrow X_{2}sarrow s$

($i.e.$ , every $arrow s$ reduction starting with $x$ must eventually terminate at a normal form of $x$).

3 Balanced Weak Church-Rosser Property
This section introduces the new concept of balanced weak Church-Rosser property. Though in
the later sections this concept will play an important role for analyzing normalizing strategies of
term rewriting systems, our results concerning the balanced weak Church-Rosser property can be
presented in an abstract framework depending solely on the reduction relation.

Let $A=\langle D,$ $arrow$ } be an abstract reduction system.

Definition 3.1 $A=\{D,$ $arrow\rangle$ is balanced weakly Church-Rosser $(BWCR)$ iff
$\forall x,$ $y,$

$z\in D[xarrow y\wedge xarrow z\Rightarrow\exists w\in D, \exists k\geq 0, yarrow kw\wedge zarrow kw]$ .

We define the local Church-Rosser property and the local strong normalizing property for an
element $x\in D.$ $x$ is strongly normalizing if every reduction starting with $x$ terminates. $x$ is
Church-Rosser if

$\forall y,$ $z\in D[xarrow^{*}y\wedge x : z\Rightarrow\exists w\in A, yarrow^{*}w\wedge zarrow^{*}w]$.
$x$ is complete if $x$ is Church-Rosser and strongly normalizing.

Lemma 3.2 (BWCR Lemma) Let $A=(D, arrow)$ be BWCR. Let $x=y$ and $y\in NF$ . Then,

(1) $x$ is complete.

(2) All the reductions from $x$ to $y$ have the same length ($i.e.$ , the same number of reduction steps).

The following lemma is essential to relate the balanced weak Church-Rosser property to a
normalizing reduction strategy.

Lemma 3.3 $Letarrow\alpha andarrow\beta$ be two reduction relations on $D$ such that:

(1)
$arrow\alpha$ is balanced weakly Church-Rosser,

(2) If $xarrow y\beta$
then;

(i) $x=y\alpha$ or,

(ii) $x=\alphaarrow\betaarrow y+\alpha$

If $xarrow^{*}y\beta$ and $y\in NF_{\alpha}$ , then we have $xarrow^{*}y\alpha$ Here, $NF_{\alpha}$ is the set of the normal forms conceming
$arrow$ .

$\alpha$
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4 Term Rewriting Systems
In the following sections, we will explain how to apply the BWCR lemma to term rewriting
systems. We briefly explain the basic notions and definitions concerning term rewriting systems
[1, 4, 6].

Let $\mathcal{F}$ be an enumerable set of function symbols denoted by $f,g,$ $h,$ $\cdots$ , and let V be an
enumerable set of variable symbols denoted by $x,$ $y,$ $z,$ $\cdots$ where $\mathcal{F}\cap \mathcal{V}=\phi$. By $T(\mathcal{F}, \mathcal{V})$ , we
denote the set of terms constructed from $\mathcal{F}$ and V. The term set $T(\mathcal{F}, \mathcal{V})$ is sometimes denoted
by $T$ .

A substitution $\theta$ is a mapping from a term set $T(\mathcal{F}, \mathcal{V})$ to $T(\mathcal{F}, \mathcal{V})$ such that for a term $t,$ $\theta(t)$

is completely determined by its values on the variable symbols occurring in $t$ . Following common
usage, we write this as $t\theta$ instead of $\theta(t)$ .

Consider an extra constant $\square$ called a hole and the set $T(\mathcal{F}\cup\{\square \}, \mathcal{V})$ . Then $C\in T(\mathcal{F}\cup\{\square \}, \mathcal{V})$

is called a context on $\mathcal{F}$ . We use the notation $C[, \ldots , ]$ for the context containing $n$ holes $(n\geq 0)$ ,
and if $t_{1},$

$\ldots,$
$t_{n}\in T(\mathcal{F}, \mathcal{V})$ , then $C[t_{1}, \ldots , t_{n}]$ denotes the result of placing $t_{1},$

$\ldots,$
$t_{n}$ in the holes

of $C[, \ldots, ]$ from left to right. In particular, $C[]$ denotes a context containing precisely one hole.
$s$ is called a subterm of $t\equiv C[s]$ . If $s$ is a subterm occurrence of $t$ , then we write $s\subseteq t$ . If a
term $t$ has an occurrence of some (function or variable) symbol $e$ , we write $e\in t$ . The variable
occurrences $z_{1},$ $\cdots,$ $z_{n}$ of $C[z_{1}, \cdots, z_{n}]$ are fresh if $z_{1},$ $\cdots,$ $z_{n}\not\in C[, \cdots, ]$ and $z;\not\equiv z_{j}(i\neq j)$ .

A rewriting rule is a pair { $l,$ $r\rangle$ of terms such that $l\not\in \mathcal{V}$ and any variable in $r$ also occurs in 1.
We write $larrow r$ for { $l,$ $r\rangle$ . A redex is a term $l\theta$ , where $larrow r$ . In this case $r\theta$ is called a contractum
of $l\theta$ . The set of rewriting rules defines a reduction $relationarrow onT$ as follows:

$tarrow s$ iff $t\equiv C[l\theta],$ $s\equiv C[r\theta]$

for some rule $larrow r$ , and some $C[],$ $\theta$ .

When we want to specify the redex occurrence $\triangle\equiv l\theta$ of $t$ in this reduction, we write $tarrow\Delta s$ .

Definition 4.1 A term rewriting system $R$ is a reduction system $R=(T(\mathcal{F}, \mathcal{V}),$ $arrow$ ) such that
the reduction $relationarrow onT(\mathcal{F}, \mathcal{V})$ is defined by a set of rewriting rules. If $R$ has $larrow r$ as a
rewriting rule, we write $larrow r\in R$ .

We say that $R$ is left-linear if for any $larrow r\in R,$ $l$ is linear (i.e., every variable in 1 occurs only
once).

Let $larrow r$ and $l’arrow r’$ be two rules in $R$ . Assume that we have renamed the variables
appropriately, so that 1 and $l’$ share no variables. Assume that $s\not\in V$ is a subterm occurrence
in $t$ , i.e., $t\equiv C[s]$ , such that $s$ and 1’ are unifiable, i.e., $s\theta\equiv l’\theta$ , with a minimal unifier $\theta[4,6]$ .
Then we say that $larrow r$ and $l’arrow r’$ are overlapping, and that the pair { $C[r’]\theta,$ $r\theta$ ) of terms is
critical in $R[4]$ . We may choose $larrow r$ and $l’arrow r’$ to be the same rule, but in this case we shall
not consider the case $s\equiv l$ , which gives the trivial pair $(r, r)$ . If $R$ has no critical pair, then we
say that $R$ is non-overlapping. If every critical pair ( $s,$ $t\rangle$ is trivial, i.e., $s\equiv t$ , then $R$ is weakly
overlapping $[4, 6]$ .

$R$ is orthogonal if $R$ is left-linear and non-overlapping. $R$ is weakly orthogonal if $R$ is left-linear
and weakly overlapping. The following result is well known $[4, 6]$ .

Proposition 4.2 Let $R$ be orthogonal (or weakly orthogonal). Then $R$ is Church-Rosser.

5 Strong Sequentiality
The fundamental concept of strong sequentiality for orthogonal term rewriting systems was intro-
duced by Huet and L\’evy [3]. In this section we explain the basic notions and properties related to
strong sequentiality, according to Huet and L\’evy [3], and Klop and Middeldorp [7]. Instead of the
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orthogonality, we assume only left-linearity for term rewriting systems. Thus, strong sequentiality
defined here is an extension of the original one in [3].

Note. From here on we assume that $R$ is a left-linear term rewriting system which may have
overlapping rules.

Consider an extra constant $\Omega$ and the set $T(\mathcal{F}\cup\{\Omega\}, \mathcal{V})$ , denoted by $T_{\Omega}$ . The element of $\Gamma T_{\Omega}$

is called a $\Omega$ -term.

Definition 5.1 The preordering $\geq on$ $T_{\Omega}$ is defined as follows:
$t\geq\Omega$ for all $t\in T_{\Omega_{J}}$

$f(t_{1}, \cdots,t_{n})\geq f(s_{1}, \cdots, s_{n})$ $(n\geq 0)$ if $t_{i}\geq s_{i}$ for $i=1,$ $\cdots,$ $n$ .
We write $t>s$ if $t\geq s$ and $t\not\equiv s$ .
Definition 5.2 (Compatibility) Two $\Omega$ -terms $t$ and $s$ are compatible, denoted by $t\uparrow s$ , if $the\uparrow e$

exists some $\Omega$ -term $r$ such that $r\geq t$ and $r\geq s_{2}$. otherwise, $t$ and $s$ are incompatible, denoted by
$t\# s$ . Let $S$ be a set of $\Omega- ter\eta n$ . Then $t\uparrow S$ if there exists some $s\in S$ such that $t\uparrow s$ ; otherwise,
$t\# S$ .

Let $t_{\Omega}$ denote the $\Omega$-term obtained from a term $t$ by replacing each variable in $t$ with $\Omega$ . The
set of redex schemata of $R$ is $Red=\{1_{\Omega}|larrow r\in R\}$ . The $\Omega- reductionarrow\Omega$ is defined on $T_{\Omega}$ as
$C[s]{}_{arrow\Omega}C[\Omega]$ where $s\uparrow Red$ and $s\not\equiv\Omega$ . $\omega(t)$ denotes the normal form of $tconcerningarrow\Omega$ . Note
that $\omega(t)$ is well-defined according to the completeness $ofarrow\Omega[7]$ .
Definition 5.3 (Index) Let $\Delta$ be a redex occurrence in $C[\triangle]$ such that $z\in\omega(C[z])$ where $z$ is $c\iota$

fresh variable. Then the redex occurrence $\triangle$ is called an index of $t$ . If $\triangle$ is an index of $C[\triangle]$ then
we write $C[\triangle_{I}]$ ; otherwise $C[\triangle_{NI}]$ .

The original definition of index in Huet and L\’evy [3] is restricted to orthogonal term rewriting
systems; hence, any tvvo indexes occurring in a term must be disjoint. On the other hand we assume
only left-linearity for term rewriting systems. Hence, if a term rewriting system is overlapping
then two indexes may be overlapping as follows.

Example 5.4 Let $Red=\{p(s(\Omega)),s(p(\Omega))\}$ . Then we have the overlapping indexes $f(s(p(s(x))_{I})_{I})$

since $\omega(f(z))\equiv f(z)$ and $\omega(f(s(z)))\equiv f(s(z))$ .

One might think that overlapping redex occurrences always make overlapping indexes, but this
is not the case from the following example.

Example 5.5 Let $Red=\{0, f(O),g(f(\Omega), 1)\}$ . Then we have $g(f(0_{NI})_{I}, 0_{I})$ . Note that two redex
occurrences $f(O)$ and $0$ are overlapping but $0$ occurring in $f(O)$ is not an index.

$tarrow\Delta s$ is an index reduction if $\triangle$ is an index of $t$ . We indicate the index reduction with $tarrow s;I$

otherwise $tarrow sNI$

We say that $R$ is strongly sequential if for each term $t\not\in NF,$ $t$ has an index [3, 7, 6]. Note
that index reduction of a strongly sequential system $R$ is a reduction strategy because we can
always apply an index reduction to a term being not a normal form.

The decidability of strong sequentiality for orthogonal term rewriting systems was first proven
by Huet and L\’evy [3], through a complicated decision procedure. A simple proof by Klop and
Middeldorp can be found in [7]. This result can be immediately generalized to left-linear term
rewriting systems.

Theorem 5.6 Strong sequentiality of left-linear term rewriting systems (which may have over-
lapping rules) is decidable.
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6 Index Reduction of Overlapping Systems
We will now explain how to prove the normalizing property of index reduction for balanced am-
biguous term rewriting systems by using the BWCR lemma. We first define balanced ambiguous
term rewriting systems.

Let $R$ be a term rewriting system. The root reduction $tarrow_{f}s$ is defined as $tarrow\Delta s$ and $\triangle\equiv t$ .

Definition 6.1 A critical pair \langle $s,$ $t$ } is root balanced joinable if $sarrow t’rk$ and $tarrow_{f}t’k$ for some $t’$ and
$k\geq 0.$ A term rewrrting system $R$ is root balanced joinable if every critical pair is root balanced
joinable.

Definition 6.2 A term rewriting system $R$ is balanced ambiguous if $R$ is left-linear and root
balanced joinable.

Note that every weakly orthogonal term rewriting system is trivially balanced ambiguous since
every critical pair is root balanced joinable with $k=0$ .

Lemma 6.3 Let $R$ be balanced ambiguous. Let $tarrow t’Itarrow t”I$ Then, we have $t’arrow SkI$ and $t”arrow SkI$

for some $s$ and $k\geq 0$ ($i.e.,$
$arrow I$ is BWCR).

The parallel reduction $t\dashv\vdash s$ is defined with $t\equiv C[\triangle_{1}, \cdots , \triangle_{n}]\lrcorner^{\Delta\ldots\Delta_{n}}arrow s(n\geq 0)$ .

Lemma 6.4 Let $Rl$ , strongly sequential and balanced ambiguous, and let $t-\dashv\vdash s$ . Then $t=_{I}s$ or

$t=I-\vdash\cdotarrow s+I$

Theorem 6.5 Let $R$ be strongly sequential and balanced ambiguous. Then index reduction
$arrow I$

is
normalizing.

7 Balanced Ambiguous Left-Normal Systems

In this section we discuss syntactical characterization of strongly sequential overlapping term
rewriting systems. An answer concerning orthogonal term rewriting systenis was found by O’Donnell
[8]. He proved that if an orthogonal term rewriting system $R$ is left-normal then $R$ is strongly se-
quential and leftmost-outermost reduction is normalizing. We show that his result can be naturally
extended to balanced ambiguous term rewriting systems.

Definition 7.1 The set $T_{L}$ of the left-normal terms is inductively defined as follows:

1. $x\in T_{L}$ if $x$ is a $va\dot{n}able_{J}$

2. $f(t_{1}, \cdots,t_{p-1}, t_{p}, t_{p+1}\cdots, t_{n})$ $(0\leq p\leq\uparrow z)$

if $t_{1},$ $\cdots,t_{p-1}$ are ground terms $(i.e.$ , no variable occurs in $t_{1},$ $\cdots,$ $t_{p-1})_{J}t_{p}\in T_{L}$ , and
$t_{p+1},$ $\cdots$ , $t_{n}$ are variables.

The set of the left-normal schemata is $T_{L\Omega}=\{t_{\Omega}|t\in T_{L}\}$ . We say that $R$ is left-normal
[8, 3, 6] iff for any rule $larrow r$ in $R,$ $l$ is a left-normal term, i.e., $Red\subseteq T_{L\Omega}$ .

Lemma 7.2 Let $R$ be left-linear and left-normal (note that $R$ may be overlapping). If a term $t$

is not a normal $fo\uparrow m$ , then the leftmost-outermost redex of $t$ is an index.
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Theorem 7.3 Let $R$ be balanced ambiguous left-normal. Then, leftmost-outermost reduction is
normalizing.

Note that every weakly orthogonal left-normal term rewriting system is balanced ambiguous
left-normal. Thus the following corollary holds.

Corollary 7.4 Let $R$ be weakly orthogonal left-no$7mal$. Then, leftmost-outermost reduction is
normalizing.
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