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A Mixep KNUTH CORRESPONDENCE FOR (4, B)-PARTIALLY STRICT TABLEAUX

Masao IsHIKAWA

Department of Mathematics
Faculty of Science
University of Tokyo
Hongo, Bunkyo-ku Tokyo, Japan 113

Fix finite totally ordered sets A, A'throughout this article. A pair (U, C) of subsets of A is called a
division of A if it satisfies :
UwC=A. (disjoint union)

Henceforth, we fix a division (U, C) of A, and we call elements of U uncircled letters and elements of C
circled letters. Fix another division (4, B) of A. Set k = |A| and ! = | B so that we have |A| = k+ 1. We
have two pairs (A4, B) and (U, C) which are divisions of A. We write

A, = AN, A.=ANnC
B, =BnU, B.=BnC’

ExamrLE 1.1 :

Set A ={1,3°5,7°}, B = {2,4°,6,8°}, U = {1,2,5,6} and C = {3°,4°,7°,8°}. Then (4, B) and (U, C)
are divisions of [8] and we have A, = {1,5}, A. = {3°,7°}, B, = {2,6}, and B, = {4°,8°}. Asin this
example we write elements of A in lightface and elements of B in boldface.

We take the word “(A, B)-partially strict” from [Ok], but the original definition is due to [St]. For the
definition of (k,!)-semistandard tableaux see [BR] or [Re]. A reverse plane partition 7 is a filling of a Young
diagram with letters of A wherein in each row from left to right and in each column from top to bottom the
letters are arranged in weakly increasing order.

DEFINITION 1.1
Let 7 be a reverse plane partition. x is said to be (A4, B)-partially strict if it satisfies the conditions:

(?) For any m € A, m appears at most once in each column.

(#1) For any m € B, m appears at most once in each row.

We call a (A, B)-partially strict reverse plane partition a (A, B)-partially strict tableau. A (P, #)-partially
strict skew tableau is usually called a column-strict skew tableau and a (@, P)-pdrtially strict skew tableau,
a row-strict skew tableau. If A = {1,2,...,k}and B = {1',2,... .V}, where 1 <2< ... <k <1 <2 <
... <l', then a (A, B)-partially strict tableau is called a (&, I)-semistandard tableau.

ExamPLE 1.2
Set (A, B) to be the division given in ExaMPLE 4.1. Then

11 ]1]2(°4]5]5]°7

°31°3|°3|°4]6 |°7]|°7

T = °41 5 | 5|6

04 07 07 08

5 1°8
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is a (A, B)-partially strict tableau.

7l_I - 4 4 1I 2l
113
1I

is an exmple of (4, 3)-semistandard tablean, where 1 <2<3<4<1'<2' <3

DEFINITION 1.2
Let A/u be a skew diagram. Let T4 5)(A/n) denote the set of all (A, B)-partially strict skew tableaux of
shape A/u. For m € T4 g)(A/u) set the weight wi(r) of 7 to be [], ¢ 4 z5'* where

mge = the number of times a occurs in 7

and z,'s are indeterminates. Set

A,B
HSi/“ )( )= Z wi(7).
€T 4,8y (A1)

It is clear from the defintion that
HS(P) (z) = HS{2) ().

Alfu
In particular if A = {1,2,...,k} and B={1',2',...,1'}, where 1 <2< ... <k<1' <2 <... <V,
. B
we write HSf\';;‘ )(x) as S'(\/’”)(xl,mg,...,wk,yl,yg,...,'yl). .

PrRoPOSITION 1.1
Set A ={ay1,a,...,ax} and B = {bl,bz,... b1}. Then

A,B k1
S( )( )“ Si/ﬂ)(a”alygjagv”wxakvxblvxbg?"wxbl)

Proof.
We can easily construct a bijection beteween T(a,B)(A 1) and 7}{1 2,0k} {1,21,...0}) (A1) using the jeu de
taquin method in [Re], Section 3, pp.266. For details see [Re]. '

Now we define a mixed Knuth insertion.

DEFINITION 1.3
Let 7 be a (A, B)-partially strict tableau and let z € A . We define INSERT (4 g, cy(z) as follow.

If x € U, insert z into the first row of 7; if z € C, insert x into the first column of 7. If the bumped
elemet y is uncircled, then we insert y into the row immediately below or if the bumped element y is circled,
then we insert y into the column immediately to its right by the following rules.

y replace the least element which is > y if y € A, U B,: or y replace the least element which is > y if
y € B, UA,.

Continue until an insertion takes place at the end of a row or column, bumping no new element. This
procedure terminates in a finite number of steps. Then set (s,t) to be the cell which is added to =.

Similarly we define INSERT 4, B,u,c)(#) by swapping U and C in the foregoing definition. If z € U,
insert z into the first column of 7; if z € C, insert z into the first row of 7. The uncircled letters which are
bumped are inserted into the column immediately to its right and circled letters are inserted into the row
immediately below by the following rule.
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y replace the least element which is > y if y € A, U B,: or y replace the least element which is > y if
y€ B, UA,.

It is easy to see that the resulting tableau is also (A, B)-partially strict. Let 7 <™ & (resp. ¢ —™ )
denote the tableau which is obtained after we applied INSERT 4 5.v,cy(z) (resp. INSERT 4 p,u,c)(x)) to
7.

ExampPLE 1.3 _
Let 7 be the (A, B)-partially strict tableau in EXAMPLE 4.2.

T <™ 4 = °4 | 5 >5 6 | °8

°4 ] 6 |°7|°7

And we have (s,t) = (4,4).

™= °3] 5] 51516

2 —

°q4 |°7|°7|°8

°4|°8

And we have (s,t) = (6, 1)./

ReEmMARK 1.1

In [Re] two insertion procedures are defined for (k,!)-semistandard tableaux. Set A = {1,2,...,k} and
B={1,2",...,)V'}, where 1 <2< ...<k<1 <2 <...<l. U = A and C = B, then the insertion
algorithm in Definition 4.2 is called RS1 insertion in [Re]. f U = A and C = @, then the insertion algorithm
is called RS2 insertion.

DEFINITION 1.4

Let 7 be a (A, B)-partially strict tableau. Set m, to be the number of times = occurs in 7 for each z € A.
Let m = 3, 4 m: We make a partial tablean pt(7) with letters in [m] from 7 as follows. If z € A, then
replace m, z's in 7 to Ey<x me + 1, zy<m me +2, ..., Zny m, from left to right. If z € B, then replace
mg £'sin 7 to qu mg + 1, zy<z Mg +2, ..., Eys.m m, from top to bottom. If £ € U then ) . _m, +1,
Zy<x mg+2, ..., ZySa: m, are in U, and vice versa. .

y<z

ExaMPLE 1.4
If = is as in Example 4.2, then pt(x) is as in Example 2.2.

DEFINITION 1.5

A word with repetition is a sequence w = Wi Wy ... W, of letters in A wherein each a € A can appear more
than once. Given a word with repetition w = wywsy...wn,, we make the insertion tablear 7 = § «™ w for
w as follows. For i = 1,2,...m we define inductively 7y = @ and 7; = m;_; <™ w;. Let 7 = 7.
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ExAaMPLE 1.5 .
w=2°2 °2 1 °3 4 °3 °3 1 4 °2 4

is a word with repetition and the insertion tableau for w is as follows.

1 111°2]1°3] 4

D—="w= ]1°2}°3]°31] 4

°21 4

DEFINITION 1.6
For a given word with repetition w = wyws ... wy, we make a permutation p(w) of [m] as follows. For each
z € A let m, denote the nnmber of times z appears in w. For each z € A, if x € A, U B, then replace all

z in w by Zy<z mg + 1, mg + 2 Zyﬁm ™My in increasing order. For each 2 € A, if z € A, UB,
then replace all z in w by i‘y<m My, 9 y<a Mo — 1, ..., Zy<x m; + 1 in decreasing order. If z € U then
Ly<aMa+1, 2 oma +2,. Ey< m, are in U, and vice versa.

ExaAMPLE 1.6
Let w be as in ‘Example 4.5.

p(w)="°3 °4 1 °8 9 °7 ° 2 10 °5 11

1 ]211°8]°3]9

@ <" plw)=|°4]°6]|°7]10

°5 |11

The following proposition is easy to see from definitions.

ProrosiTION 1.2
Let w be a word with repetition. Let w be the insertion tableau of w Then the following diagram commutes.

e s

? pt
p(w) e pt(7)

where the top and bottom bijections are the mized Knuth and mized Robinson-Schensted maps, respectively.
| |

LemmMma 1.1 . )
Let @ be a (A, B)-partially strict tableau and x,z' € A. If INSERT 4 p.yc)(z), determining s and t, is
immediately followed by INSERT (4 gy c)(2'), determining (s',t'), then
(Case 1) z,2' € U
(a) Ifx <o’ orz=2a'€ A then we have s > 5' and t < t'.
(b)) Ifx >z orz=2z' € B then we have s < s' and t > t'.
(Case 2) z,a' € C
(a)Ifz>a' orz=1"€ Athens>s andt < t.
() fz<a' orz=2"€Bthens<s andt> 1.



(Case 8) x € U and ' € C, we always have s < s’ and t > t'.
(Case 4) v € C and =’ € U, we always have s > s' and t < t'.

Proof.
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Choose arbitrary word with repetition w such that 7 = @ «™ w. Let w’ = wzz'. Then it is easy to verify

the lemma by using Proposition 4.2, Corollary 2.2, and Lemma 1.1. For example, we verify Case 3. Assu

me

that z € U and z' € C. Then z' € C is changed into some negative letter —z' which is less than x so that

we obtain s < s’ and ¢ > # immediately by Lemma 1.1. g

REMARK 1.2
In the foregoing lemma by changing INSERT (4 B,u,c)(x) and INSERT (4 B,v,cy(z') into

INSERT(ABUC)(:B) and INSERT(ABUC)(Q:) respectwely and swapping U and C, we obtain a similar

result on INSERT(A Bw,c)(*)-

Fix another finite totally orderd set A’ and its divisions (A’, B’) and (U’,C") such that |[4'| = k' and

|B'| =1 We write
AL =A'nT, Al=A'nC'
B, =B'nU, B.=B'nC'"

DEFINITION 1.7
Let a be a (k' +1') x (k+ 1) matrix of nonnegative integers

¢i11 G312 ... Q1g
_ a2, Qa2,2 e a2 g

a =
am,l a,,,,,g cee am’n

whose rows are labeled by eléments of A’ and columns are labeled by elements of A. a is said to be addmissible

if it satisfies:
(1) (4,j) e A' x AUB' x B, a;; € N.
(2)If (5,j) e A" x BUB' x A, aij € {0,1}.

Let M(A', B', A, B) denote the set of all admissible (k' + ') x (k + ) matrices.

EXAMPLE 1.7
Let A’ = {2,°4}, B’ = {1,°3}, A = {°3,4}, and B = {1,°2}. Then

—_ O M
[en]

0
1
1
1

O L =D
O e

is a admissibe 4 x 4 matrix. As in this example we write a; ; such that (4,j) € A’ x AU B' x B in italic.

DEFINITION 1.8
Let a € M(A', B', A, B). From a we make a two-line array

_ ul u2 CEEERY e um
@)= )

as follows. We arrange a, , pairs of row and column labels (Z) by the following rule.



66

First we assume that
up Sug < ovv < U

Uy

(1) For each u € ‘Al, U B. we arrenge all labels ( ) such that u; = u as follows.

Vp1sVpgy Upgrevvrees¥pryVpri1s Vpsazreoores 1 Upops
. ~— o - ~

elements of C elements of U

in decreasing order in increasing order

(2) For each u € A, U B. we arrenge all labels (u’) such that u; = u as follows.

i3

Upys Upyy Vpgse o3 Vprs Uprgnsy Vprgas oo oo 1 Upps
~ - ~
elements of U elements of C'
in decreasing order in increasing order

It is easy to see this gives an one to one correspondence between admissible matrices and two line arrays
satisfying the above conditions. We call this two line array the matriz word of @ and denote by I(a). The

-~

top (resp. bottom) line of I(a) is denoted by l(a) = uy, ug,- -+, uy (resp. (@) = vy, 03, ) Up)-

ExampPLE 1.8
The two line array which correspond to the matrix a in EXAMPLE 4.5 is

I()_112222°3°3°3°3°4°4°4°4
@)= 1 1 °3 °2 4 4 °3 °2 °2 °2 4 4 1 °3)°

DEFINITION 1.9
Let a € M(A',B', A, B). From a we make a two-line array {(a) in Definition 4.8.

I _ ul U2 ... .« um
vl ’UQ . e ... ‘ljm
We construct a sequence of tableaux pairs:

(@,0) = (WD, 00),(”1901)"' . ,(7l'm,0'm) = (7[',0')

inductively as follows. For each ¢ = 1,2,...,m form #; from 7;_; by performing INSERT 4 B.u,c)(v:) on
7;—1 if u; is a uncircled letter, or performing INSERT 4 B,u,c)(vi) on m;—1 if u; is a circled letter. Form o;
from o;_; by placing u; on ¢;_; in the cell added to 7;. By Lemma 4.1 o is a (A’, B')-partially strict tableau
and 7 and o have the same shape.

ExamMPLE 1.9
Let @ be as in Example 4.7. Then

1 1°21°3|°3 4|4 1121 2]21}°3]°4
T = 1}1°2] 4 o= 1 1°31°4

11]°3 2 1°3

°21 4 °3 | °4

°2 °4.
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DEFINITION 1.10
Let a € M(A',B', A, B). Let

l(a) _ ul u,.z . e .« .. u,,n

- vl ’U‘z e ‘.. Um
be the two line array which correspond to a. We construct a biword w from [ as follow. For each z € A
(resp. z € A') let m, (resp. m.) denote the numeber of times 2 occurs in the bottom (resp. top) line of 1.

Replace m/, z's in the top line of I by ZKE mg + 1, ZKI My + 2, ..., 2y<z m, from left to right. The
circles are transfered unchanged in this replacement. For each z € A let r, (resp. s;) be the number of pairs
(:;) such that v; = & and u; € U (resp. u; € C). So we hgwe Tz + 85 = mg. For each z € A we replace v;’s
such that v; = z by the following rules. The circles are transfered unchanged in this replacement.
(Casel): z € A, U B,

Replace the v;’s of pairs (:,) such that v; = z and u; € C by ZKz mg+1, zy<x mg+2, ..., ZKE Mg+ 8z

My + 8z + 1,

“from right to left. Then replace the v;’s of pairs (:‘) such that v; =g and u; € U by Zy“
2

Ey<$ my + 85 +2, ..., Eysx mg from left to right.
(Case 2): z € A.UB,
Replace the v;’s of pairs (:,) such that v; =  and u; € U by Eyq mg+1, Zy<x mz+2,..., qu My +Tg

("f) such that v; =  and »; € C by 3.

v

Zy(z My +72+2, ..., Zy5$ mg from left to right.

from right to left. Then replace the v;’s of pairs me + 7z + 1,

y<z

Let p(a) denote the resulting biword.

ExamMpPLE 1.10
Let a be as Examle 4.7 and /(a) as Example 4.8. Then we have

() = 1 2 3 4 5 6 ° °8 ° °10 °11 °12 °13 °14
P9=\2 1 °8 °7 13 14 °9 ° °5 °¢ 12 11 3 °10)°

The following proposition is easy to see from definitions.

PropPosITION 1.3
Leta € M(A',B', A, B). Then the following diagram commutes.

a (m,0)
E
p(a) — (p¥(m),pt(c))
where the top and bottom bijections are the mized Knuth and mized Robinson-Schensted maps, respectively.
| N
ExamMPLE 1.11
Let p(a) be as in Example 4.9. Then the insertion pair of p(a) is as follows.

1 }°4]1°91°10]13]14 114 ]|5]6]°7]°14
= 2 f°5|12 o= 2 | °8{°13

3 1°8 3 1]°9

°6 | 11 °101°12

°7 °11
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From Proposition 4.3 we obtain the following theorem.

THEOREM 1.1

Fiz A and its divisions (U, C) and (A, B). Fiz another A' and its divisions (U',C") and (A’, B'). The map
“in Definition 4.9 from admissible matrices a € M(A', B', A, B) to pairs (x,0), where 7 is (A, B)-partially
strict tableau, o is (A', B')-partially strict tableau and 7 and o have the same shape, is a bijction.

The following proposition is also easy to see from definitions.

ProPosITION 1.4
Let a € M(A',B', A, B). If p(a) correspond to a by the map in Definition 4.10, then the inverse biword
p(a)~! correspond to a®. Here a' denote the conjugate matiz of a.

From Proposition 4.4 we obtain the following theorem.

THEOREM 1.2

Fiz A and its divisions (U, C) and (A, B). Assume that (7,0) correspond to a by the bijection in Definition
4.9, where a € M(A,B, A, B), and 7 and o are (A, B)-partially strict tableau having the same shape. Then
(0, 7) correspond to a' by the same bijection.

ExXAMPLE 1.12
Let a be as Examle 4.7. Then

2 0 0 1
g0t oso0
0 1 1 1
0 2 .0 2

and

I(a)_111°2°2°2°2°3°3°34444
T\1 1 °4 °3 °3 °3 2 2 °3 °4 °4 °4 2 2)°

It’s easy to make sure that

1 |°2|°3|°3|4]4 1{2)2]2]°3]°4
7= |1 ]°2]4 o= |1 |°3]|°4

1]°3 5 |°3

°2 | 4 °3 | °4

°2 °4

DErFINITION 1.11
Fix A and its divisions (U, C) and (4, B). Let a = (ai;)i jea € M(A, B, A, B) be an admissible symmetric
.matrix. We define tr 4 gy a by

tra,Bya = Z ai; + Z odd{a;;}

i€EA t€EB

st ={} 12554,
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COROLLARY 1.1
Fiz A and its divisions (U,C) and (A, B). The map in Definition 4.9 gives a bijection from admissible
symmetric matrices a € M(A, B, A, B) onto (A, B)-partially strict tableauz w. In this bijection we have

tr(A,B) a = Odd(/\)
where A is the shape of 7 and odd()) stands for the number of odd length columns in A.

ExaAamMPLE 1.13
Let A ={1,°3} and B = {°2,4}. Let a be an admissible symmetric matrix given by

10 2 0
{0 2 1 0
=12 1 0 1
0 0 1 1
Then
1()—1 1 1 °2 ©°2 °2 °3 °3 °3 °3 4 4
@)= \°3 °3 1 °3 °2 °2 4 1 1 °2 4 °3/)°
and

111§ 1]°2]¢4

T = 02 03 03 03
°2 1 4
°3

COROLLARY 1.2
Fiz A and its division (A, B).

. 1 1 14tz
ZA:HSgA’B)(x)tdd(")z I1 el § CEEENY | Eorml | =

(i,j)EAx AUBx B '™ (i,j)EAXB i€A i€B :
i<j

In particular,

A,B 1 1
> #MP@ = [ e I Otemen]l=m
p .. —zizy . Nt S

Al even (¢+,j)EAXxAUBxB (,j)EAXB i€B .
$<y

Now we investigate skew case. Let PST(4 5)(A/n) denote the set of (A, B)-partially strict skew tableaux
which have skew shape A /pu.

THEOREM 1.3
Fiz A and its divisions (U,C) and (A, B).. Fiz another A’ and its divisions (U',C") and (4',B'). Let o
and B be fized partitions. Then the map

(a,7,k) = (7,0)

defined below is a bijection between admissible matrices « € M(A, B, A", B') with 7 € PST(4 gy(a/u) and
x € PST (4 py(B/1), on the one hand, and 7 € PST (4 p)(A/B) and 0 € PST 4 gy(A/a), on the other,
such that 7 U i(a,) =7 and K UT(a) =g0.
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Proof.
Let the largest letter of x U T(a) be n. We construct (m,,0,) for r = 0,1,...,n as follows. Start with
(m0,00) = (7,04). Form =, from 7,_; as follows.

Case1:r€ A, UB! ;

At first we insert all the circled letters of /(a) paired with r's in I(a), where these circled letters are
arranged in decreasing order. Next we internally insert all the letters of 7, corresponding to r’s in o,_;.
If r € A,, the insertion proceed left to right, and if r € B, the insertion proceed top to bottom. Finally we
insert all the uncircled letters of i(a) paired with 's in ’I\(a), where these uncircled letters are arranged in
increasing order.

Case2: r€ ALUB!

At first we insert all the uncircled letters of i(a.) paired with 7’s in T(a), where these uncircled letters are
arranged in decreasing order. Next we internally insert all the letters of 7,3 corresponding to r’s in 0,1
If » € A}, the insertion proceed left to right, and if »r € B, the insertion proceed top to bottom. Finally
~we insert all the circled letters of i(a) paired with 7’s in IA(a.), where these uncircled letters are arranged in
increasing order.

In either case placing 7’s in the appropriate cells of ¢,_; result in o,. It is not hard to see that the cells
where 7's are placed are horizontal or vertical strip in o,. At last we put (7,,0,) = (7,0). &

ExAaMPLE 1.14

0 1 0 0
Let A = {1,°2}, B = {°3,4}, A’ = {1,°3}, B = {2,°4}, o = (221) and § = (43). Leta = g ; g é
00 1 0
o -] (] o
so that the matrix word of a is I(a) = (012 i 022 13 13 02 0: ) Let
T= 1 K= 112]°4
1] 4 1 |°3]°4
y >
Then we have
= 1 1{°3]°4 o= 1 1 2 1°3]1°3}°4
1 1°2 2 ]1°3]°3
1 1°2} 4 11]°4
°21°3 : 2 ]°4

COROLLARY 1.3

Fiz A and its division (A, B). Fiz another A’ and iis division (A',B'). Let o and B be fized partitions.
Then

A,B A',B'
Yo HSGP (2) HSS P (v)
A

_ (A,B) (A',B") 1
=2 HS7.” (=) HSg)" () I1 Fp—— [T C+awy
B (1,j)EAX A'UBX B! ' (i, /)€EAXB'UB x A/



4

THEOREM 1.4
Let A= A', (A,B) = (A", B'), (U,C) = (U',C") and o = B in Theorem 4.3. If (a,7,K) correspond to
(m,0) by the bijection in Theorem 4.3 then (a*, K, ) correspond to (o, 7) by the same bijection.

THEOREM 1.5
Fiz A and its divisions (U,C) and (A, B). Let o be a fixed partition. Then the mapping in Theorem 4.8
restricts to a bijection
’ (ay7) o

where a € M(A, B, A, B) is a symmetric matriz, 7 € PST (4, 5)(/n), * € PST(4,5)(M 1), and (@)U T = 7.
In this bijection we always have ’
tra,Bya+ Odd(p,) = Odd()\)

‘ExAMPLE 1.15

g 1 1 1
. . . 1 2 0 0 . .
Let A = {1,°3}, B = {°2,4} and o = (221). Leta = i o0 0 ol that the matrix word of a is
1 0 0 ¢
1 1 °2 °2 °2 °3 4
. t
la) = (°3 °2 4 °2 °2 1 1 1) Le
T =
4
°3
Then we have
T = 1 1
°2 | °3
1]1°21 4
°2]°3] 4

COROLLARY 1.4
Fiz A and its division (A, B). Let a be a fived partition.

(A, B) dd(a
ZHSA/Q to )

—ZHS‘AB) @eae. [ —— [ (+=zz)]]- tx.Hittl;

1—zz; x
(:,j)EAx AUBx B (+,j)EAxB zEA +t€B
i<y

In particular,

. HSYP @)= Y HSY () I1 _; I[I a+ae]] —

1 —ziz; A1 1 -z
A even w! even (i,j)EAX AUBxB (i,j)EAxB t€B ¢
i<j
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