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The girth of a directed distance-regular graph

ﬁﬁ@ﬂ]ﬁﬂj{"’? FHFIE (Kazumasa Nomura)
Auburn K% D. A. Leonard

Bounding the diameter of a distance-regular graph by some function
of its valency k is a long-standing open problem. See Bannai and
Ito [4, 5, 6, 7], Ivanov [10] and Terwilliger [16, 17]. In this paper
we consider the directed version of this problem. Not only can the
diameter be bounded in terms of &, but in fact d = g—1 < 7 absolutely.

0 Introduction

A (finite) digraph is akpajr G = (V,E), with V a non-empty finite
set of vertices, and £ C V x V, the set of directed edges (or arcs). A
t-path from a vertex u to a vertex v is a sequence u = vg,v1,...,0; =V
with (v;,v;41) € E, for 0 <1 < ¢, t is the length of the path. If u = v,
then this is called a ¢-cycle. The (directed) distance from u to v, denote
0(u,v), is the smallest ¢ for which there is a t-path from u to v. G
is connected if O(u,v) is finite for all u,v € V. The diameter is the
largest distance between vertices of GG, and the girth g is the smallest
length of a cycle in G.

A connected digraph G (without loops) is said to be dzstance regular
if the size

sjei = {z : O(u,z) =3, (v,z) = £}

‘depends only on j, £ and d(u,v), rather than the individual vertices u,

v with 0(u,v) = 1.
In (8], Damerell proved the following for distance-regular digraphs
with ¢ > 2 and diameter d:
(i) If 0 < 9(u,v) < g, then d(u,v) + O(v,u) = g,
(i1) d = g (long type) or d = g — 1 (short type),



and

(iii) every distance-regular digraph of long type can be con-
structed easily from a distance-regular of short type.

So we shall restrict our consideration to distance-regular digraphs of
short type with g > 2 (since if ¢ = 2, the graph can be viewed as
undirected). We shall also assume that the valency k > 1, to avoid G
being a directed cycle.

1 Preliminaries

There is no claim that the results in this section are new. They are
all known or straightforward. If there are no proofs, the results are
immediate from the definitions. Otherwise a short proof is given to
make this paper self-contained.

Let pjei := 8j4-0i. Let u € V. Let I';(u) = {v € V : O(u,v) =},
‘and let K; := |Ty(u)|. Note that ko = 1, k := pyy_10 = K; is the
valency, A := p; 1, is the number of 2-paths from u to v € I'i(u),
and g := p;,12 is the number of 2-paths from u to v € T'y(u). Let
G = Pi—1,1,iy bi '= Pig1g-1,i, 50 Ki1bi_1 = Kic;, K; = K;_;, and K; =
k(k—X)/p. Let f; := pi11 and h; := pyg_1,i. Then

Lemma 1.1 For 2: < g,
(a) b; < by,
(b) ¢ > ci_1,
(c) K; > Ki_1.

Proof: Fix z € I'ij(u),y € Ti(u)NTi-1(z). Then b; counts z €
Tiya(w) NTi(z) NT1(y) and b;_y counts z € T'y(z) N T1(y). The proof
of (b) and (c) follows from b; = ¢cy—;.
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Lemma 1.2 . :
k-fi=K;-h;

Proof: Count edges from I';(u) to I'1(u) in two different ways.

Lemma 1.3

fi=fo—i and h;=h,_,.

Proof:

Lemma 1.4
fo=1ho=k, and fi=A\

Lemma 1.5

g-2
k—1-22=)f.
=2
Lemma 1.6
g-2
Y Ki(hi —1) =k(k—1—2)) — (n—1—2k).
=2
Lemma 1.7
9—2
dohi<p—1.
1=2
Proof:
g-2 =2k f, kf; 922 uf; k—1-2\
S R R il
1=2 =2 2 A

Lemma 1.8

I(J Zpiv.q—"yj : pl,g-—m,r = sz,l,t : pj,m,t ¢ I{t'
r t



Proof: Fix a vertex w, and count the number of sets {z,y, 2} with
o(w,z) = 1,0(w,y) = j, 0(z,2) = £, and 0(y,2) = m by choosing
them in the order (y,z,z) and then in the order (z,z,y).

Corollary 1.9

g-1 '
D fiki = (k=N (p—1)+ A —1).
=1

Proof: Set:=j3=/{¢=m =1 above.

Corollary 1.10

S filp—1—h)= A+ DA +1-p)

1=2

Corollary 1.11 Ifk > 1, then
A>0,p>1, andn <14+ k(k+1-2)).

Proof: From corollary 1.10, (A+1)(A+1—pu) > 0. Soif A =0, then
g =1. From lemma 1.7, p —1 2> h; >20for2<:<g—2. Soif p =1,
then h; = 0 for 2 <7 < g — 2. But then from lemma 1.2, f;"= 0 for
2 <t < g—2. Then corollary 1.10 forces A = 0, and lemma 1.5 forces
k=1.

2 Graph-theoretic lemmas about I';

Throughout this paper, let u € V(G) and = € I'y(u) be fixed. Let
X; :=Ti(z) NT1(u). Then f; = |Xi|. Let ¥;:= Uio X; fori<g—1.

Lemma 2.1
X:#0, so fi #0 and h; # 0.
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Proof: Since I'1(u) is A-regular, there are the same number of edges
out of Y; as into it. Those out of Y; must go from X; to X;;;. But
there are A > 0 edges from X, C Y to {z} = X, C V..

A+1
ﬂsz( 9 )

Proof: Count the number of edges (y,w),y € X;. There are - f; =
A? edges with w € T';(u). These end in either X; or X,, but there are
at most (’2\) that end in X; because g > 3. There are at most u such

Lemma 2.2

edges ending at any w € Xj,.

So let f, := A+ 1DA+¢)
2p

for some € > 0. And hence

gff,- = 1«--1—:>,)\—-:>,f2=“h—f"’—(A+1)—2f2
£ Z

(1= 2ha) (A + €) = 2hays
2hap .

= (A+1)
Lemma 2.3 If g > 6, then

fa+fa2> é‘(fz +1).

Proof: If g > 4, then for any pair of distinct vertices {y, z}, at most
one of the following holds: :

y € I'1(2), y € I'2(2), z € I'1(y), z € I'2(y)-

Let d; ;(y) := |{z: z € XiNT(y)}|. Then
g—1 g-—1
> dii(y) = fiy D dii(y) = fi.
1=0 7=0

Count pairs {y, 2} with y,z € X, to get

(ng) > 3 (daa(y) + da(y))-

yeX?
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But
d1,1(y) + daa(y) +daa(y) = A
and
di12(y) + d22(y) + da2(y) + da2(y) = fa.
So, for some y € X3,

fa+fa = dsz(y) +da2(y) + dsi(y)
(f2 = di2(y) — d22(y)) + (A — di,1(y) — d2,1(y))

(a0 =A=3(f~1)

St 1)

(VAR

3 Counting

Lemma 3.1 Ifg > 6, then

g-3

Y hi <u—1—2hy <h,.

1=3
Proof: The first inequality is from lemma 1.7. From corollary 1.10,

2.()\+e)(/\+ 1) (= 2h3)(A 4+ €) — 2h,p

(k—1=h2)+(A+1)

SA+1D)A+1—p),
for some z with 0 < 2 < g — 1 — 2h,. This simplifies to

O €)[=2ha(1-+ha)+ (2ha-+2) (s —2h2)] + 2hap(e-t i —1— 2hy—2) < 0.

But then —2hy(1 + hy) + (2h2 + 2)(u — 2h;) < 0, because all the other

terms are positive. So

2h2+2 :h2+1

ﬂ—2h2<
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Corollary 3.2
g3
Y fi<fa-(A+1).

1=3
Proof:
gff,- = k—l.—2/\——2f2
- ’;f A +1)=2f,
2
= e=2h) 2h2)f2 (A+1)
< fo- (A+1)

Theorem 3.3 Let G be a directed distance-regular diagraph of short
type (that is, with the diameter d equal to g — 1 where g is the girth).
Thend=¢9g—1<T.

Proof: If g —4 > 4, then from corollary 3.2 and lemma 2.3,

g9-3

o= (QA+1)2> fiz2fs+2fi> f,+1.

1=3
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