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0: INTRODUCTION

For an arbitrary number field K with ring of integers denoted by O we study GL(2, O)
(=:G)- and SL(2, O)-equivalence classes of binary quadratic forms ®(z, y) = az?+bzy+cy?
defined over O. After fixing A € O we define the following zeta function for G-equivalence
classes of the binary quadratic forms over O of discriminant A:

Pa(s) = E § INk/q(®(z,y)|™%, A # square,
(@] (z.v)E(OxO)/E(®)
& primitive
A(R)=A

where E(®) := {g € G: g® = d}.

For the rational numbers and imaginary quadratic fields one can define this also for
SL(2, O©)-equivalence, which for convenience we call 1-equivalence.

We will express it in closed form in terms of the zeta function of an order in the field
L = K(+/A) associated to the primitive forms. For the latter one can also find a description
by L-series of L = K(+/A). The simplest method to give an identity involving L-series
would be to .take a representing form of each class, represent it as norm form of the
associated module in the extension L of K by v/A and employ the module zeta function in
[Od]. Since each module has a different conductor this does not lead to a closed form. But
with this method one can omit the restriction to primitive forms, i.e. the ideal generated
by the coefficients of the form is O. For primitive forms the corresponding modules all
have the same endomorphism ring R and their similarity classes form a subgroup of the
ideal class group of R. This leads to the desired description of Pa(s) (Theorem 5.9).
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In the first paragraph we give the basic definitions. In §2 we extend the concept of pairs
introduced in [Kal] for SL(2, O)-equivalence to G-equivalence and prove for given discrim-
inant the 1-1-correspondence between G—equivalence classes of pairs and G—equivalence
classes of binary quadratic forms (Lemma 2.2). In §3 we study the automorphism group
of a form. Using the description of G- and SL(2, O)-equivalence classes of pairs, the cor-
respondence (Lemma 2.2) and the description of the automorphism group we show that
the G-equivalence class of a form @ splits into [O* : N(O})] many SL(2, ©)-equivalence
classes, Og denotes the endomorphism ring of the associated module (Lemma, 3.2). In §4
we study the structure of the endomorphism ring O4 of a module A coming from a binary
quadratic form. We show that it is free over O if and only if the coefficients of the form
generate a principal ideal in O. Fixing O4 we see that the finitely generated modules over
O'in O which have Oy as endomorphism ring (called ‘proper’) are exactly the O 4—regular
ideals which are characterized by the existence of a similar ideal which is coprime to the
conductor of Q4 in the integral closure of O in L. With this characterisation one can
construct a map from the ideal class group of O to the ideal class group of K which is
a homomorphism if and only if O4 is free over O (Lemma 4.11). Its kernel is generated
by the classes of free (over @) proper modules of O4 . In §5 we gather the results so far
to show an 1-1-correspondence between G-equivalence classes of binary quadratic forms
over O of discriminant A (3 square) and similarity classes of free (over ©) proper modules
of the unique oder of discriminant A that is free over O. We show

Pa(s) = Qa(s) := > Nk ,/q(N(4))~*.

ACR, proper ideal
free over O

In §6 we identify Qa(s) as indicated in the beginning (Theorem 6.1) and by this give the
analytic continuation of Pa(s).

1. EQUIVALENCE OF. BINARY QUADRATIC FORMS

Let K be an algebraic number field, O its ring of integers. For a,b,c € O define the
binary quadratic form
®(z,y) = az® + bry + cy’.

volo-
o Nlo

It has discriminant A(®) = b? — 4ac. We can assign the symmetric matrix 4 = <;a

to ® and write ®(z,y) = (z,y)A(z, )"
On such a form the 2 x 2-matrices with integral coeflicients operate by

G10@0) = (@ )s) = vloAd e o= (5 7)eMeo),
=a'z? + by + 'y?
with
o’ =aa? + bary + ¢y = ®(a, )
(1.1) b =2aaf + b(ab + By) + 2cv6
¢ =af? + b6+ c6? = (8, 6).
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The discriminant behaves under this operation like A([g]®) = det(g)?A(®).

“We want to study zeta functions associated to equivalence classes of binary quadratic
forms of a fixed discriminant. For this we introduce the following equivalence relation. We
fix A € O and set G := GL(2,0).

1.1. Definition. We call two binary quadratic forms ® and ¥ over O of discriminant A
G-equivalent if there exists an element g € G° such that

(92)(z,y) := det(g) ' @((z,y)g) = ¥(z,).

If we only allow transformations of determinant 1, we call the forms 1-equivalent.

This is in fact an equivalence relation. Two equivalent forms represent up to a unit the
same numbers.

(1.2) E(®?):={ge€eG:9g®2=®} and E(®):={g€G:9P=>detg=1}

are the groups of G-automorphisms and 1-automorphisms of ®.

The numbers hg and hj of G- and 1-equivalence classes for a given discriminant A # 0
are finite. This follows from [Sp] (see [Ba, Chap. 5.1]). In paragraph 3 we will give a
formula for the relation between hg and h; in the case that the discriminant is not a
square.

2. BINARY QUADRATIC. FORMS AND MODULES

For the following discussion it is enough that K is a field of characteristic # 2 and
O an integral domain with quotient field K. To each binary quadratic form of non-zero
discriminant A one naturally associates a free module of rank two over O by factorizing
the form in the extension L of K by the square root of the discriminant. L is separable over
K. If the discriminant is a square then L is isomorphic to K x K| on which conjugation is
given by exchanging the factors, if not, then L is isomorphic to the algebraic number field
K(v/A) with conjugation * given in the obvious way. For z € L let N(z) := zz* denote
the relative norm of z. In the sequel we restrict to the case that A is not a square. Then
the coefficient a of the form ®(z,y) = ax?+bzy+cy? of discriminant A is always non—zero

and the module Mg = [a, b‘ﬁ/z o in L has the property that its elements fulfil

L )

(2.1) %N(am +

This correspondence is not one to one since for example the conjugate module gives the
same form. For l-equivalence I. Kaplansky [Kal] has introduced the notion of pairs and
stated a one to one correspondence in these terms. We extended it to G—equivalence. We
display it here by looking simultaneously at G- and 1-equivalence. A pair [A,a] consists
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of a free module A of rank 2 over @ in L and a non—zero element a € K. The concepts of
involution, norm, product, discriminant and different are extended to pairs:

(2.2) [A,a]* = [A%,a], N[A,q] = @, [4, a)[B; b] = [AB, ab.

If one fixes a basis z,y of A the discriminant of A with respect to that basis is
(2.3) D(A) := (zy* — z*y)?, the different §(A) := (zy* — z*y)

and one sets

8(A)

(2.4) D([4,]) = 2, 8(14,a]) = 22

Let [A,a] be a pair of discriminant A. After fixing a square root § of A a basis of A is
called admissible if

(2.5) 6([A,a]) = 6.

An admissible basis always exists [Kal, §5].
The essential point is that the different § transforms in a good manner under base
change by an element of G. In particular it is invariant under SL(2, O).

Suppose we are in the situation (2.1). The operation of a matrix g = ;g g) €

G on (z,y) from the right corresponds on the module level to base transformation by
multiplication with g from the right, namely for the basis {a’,'} and (z,y) := o’z + b'y:

(z,y)9 = (az + vy, Bz + 6y) = (d'a+ b'v)z + (a'B + b'6)y.

Given a base of a free module A of rank 2 a base transformation of determinant e changes
the corresponding discriminant D(A) and different §(A) by the factor €2 and e respec-
tively. The pair (A4, a] together with an admissible basis gives the form @4 := %, whose
discriminant A(® 4) is equal to D([4, a]). One defines

2.1. Definition. Two pairs [A, a], [B; b] are called G-equivalent if there exists A € L* and
€ € O* such that MA = B-and eN(\)a = b. When € = 1 then they are called 1-equivalent.

Analoguous to [Kal, Theorem 1] this leads to

2.2. Lemma. Let K be a field of char # 2, Let O be integral domain with quotient field K.
For a given discriminant A fix a squareroot 6 € L. Then a one to one correspondence of G-
equivalence (resp. 1-equivalence) classes of binary quadratic forms over O of discriminant
A and G-equivalence (resp. 1-equivalence) classes of pairs of discriminant A is given by
choosing for [A,a] an admissible basis and taking the norm form % with respect to that

basis.

Proof. We only consider G-equivalence. We look at the map from pairs to forms. Surjec-
tivity follows by (2.1) and by the fact that for a form &’ which is G-equivalent to ¢ under

the matrix g we get the pair [ [q, b—;/Z ] o ,det(g)a] with:

@/ — Ng(J:’y)
det(g)a

= det(q) DD _ et (g) 10 ((z, )g).
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N, denotes the norm form with respect to the basis transformed by g. The resulting basis
is admissible because the factor det(g) in the different of the transformed basis is cancelled
by that of det(g)a. The two pairs are G—equivalent (with A= 1). Hence the pre-image of
a G—equivalence class of forms lies in a G—equivalence class of pairs.

On the other hand one has to show that the forms that are given by two G—equivalent
pairs [A, a], [B;b] by taking the norm form with respect to a chosen admissible basis are
G-equivalent. This we do in two steps. First: A =1, ie. A = B:and ea = b for some
¢ € O*: Let {z,y} be admissible basis for [4, a] and {u,v} admissible basis for [B;b]. It
suffices to show that there exists a base transformation of determinant €. Since A = B
there exists a matrix ¢ € G such that [u,v] = [z,y]g. Looking at the differents for the
given bases we see: .

b6 = ead = §(B) = det(g)6(A) = det(g)ab.

Therefore: det(g) = e. Second step: A # {0,1}. Is {z,y} admissible basis for (A4, a]
then {\z, Ay} is admissible basis for [B;N(A)a] and the corresponding forms are the same.
Then we apply step 1 to [B;N(\)a] and [B;b]. This shows that G-equivalent pairs give
G-—equivalent forms.

One shows injectivity with the same arguments as in [Kal, §5]; it is crucial that the dif-
ferent of the pair with respect to an admissible basis behaves well under G—equivalence. O

3. THE AUTOMORPHISM GROUP. OF A BINARY QUADRATIC FORM

Now we return to the case that K is a number field. The following discription of the
automorphism group E(®) is along the lines of [Z1, §8, Satz 2]. The calculations are
basically the same but for an arbitrary number field the conclusion is not as nice as over
Z because the divisibility by 2 arguments don’t work in the general case. We only give the
result and remark with respect to the proof that one has to use the prime ideal factorization
in O.

3.1. Lemma. The map

(3.2) o 1) (6+a,7/a)
is a bijection from E(®) onto the union over all invertible ¢ € O of the set of solutions of
t? — Au? = de with u € (a,b,¢)5" and t = bu mod 20.

The operation of ¢ € E(®) on the basis of the module A associated to the binary
quadratic form is like multiplication by a unit of the endomorphism ring O4 :={l € L :
A C A} of A:

(3.3)

2 2 ’ 2

[ b—\/A} t — vDBu [; b—\/A}
a, L g= a = A.
(]
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Because of Lemma 3.1 t—‘@ is a unit in O4 . On the other hand it is shown in [Sp, §3]
that a multiplication by a unit E of O4 can be expressed as a transformation from the
right by a matrix in E(®), its determinant is N /g (E) (= N(E)). Hence

(3.4) E(®) ~ 0% and E1(®) =~ {e € O4|N(¢) = 1}.

With the definitions of the previous chapter we deduce:

3.2. Lemma. The G-equivalence class of a pair [A,a] (and hence of the corresponding
binary quadratic form) splits into [O* : N(O%)] < oo 1—-equivalence classes.

Proof. Assume [A,a] and [B,b] are G-equivalent, this is B'= AA and b = N(A)ea for some
A€ L* and ¢ € O*. Then A and B:have the same endomorphism ring Q4. Multipli-
cation by a unit €4 of Oy leaves A and B:invariant. Hence [A,a] is also G-equivalent
to [B;N(ea)b]. If the above € is equal to N(e4) for some ea € ©% then [B;N(e;')b] is
l-equivalent to [4,a] for X := ;'\ Otherwise [4,a] and [B;b] are not l-equivalent.
[O* : N(O%)] is finite since {e?|e € O*} is contained in N(O%) which has finite index in
O*. This shows the assertion. O

4. THE ENDOMORPHISM RING OF. A FREE MODULE OF RANK 2

About endomorphism rings of full modules in a field see also [B-Sh]. We always suppose
that A € O'is not a square; A = [(1, b"g/z};o is the module associated to the form

®(z,y) = az? + bry + cy? of discriminant A, 9 := (a,b,¢)5" and L = K(VA). In this
paragraph we study the relation between the endomorphism ring O = {l e L : [A C A}
of A, O and the integral closure of O in L, in particular one will see that if the O4 is free
over @'then the finitely generated, free, proper ideals of @4 form a subgroup of the group:
of regular ideals of Q4. The structure of Oy is as follows:

4.1. Lemma. Oy isanorderinOp and Oy =0 @1’:2‘/—‘&‘0.

Proof. It follows from the definition that O4 is a ring with 1. It is a subring of Oy, since
it preserves a lattice.

Obviously O4 = Oy4 for all 0 # y € L. For convenience we calculate in %A. Bach

element of L can be written uniquely as a K-linear combination of 1 and %@. b—‘—Q‘/—Z is
integral since it solves z2 — bz + ac = 0; therefore b—_z%—K solves

(4.1) az? —bz+c=0.
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We see
l=:v+yb_2;/Z. €0y, z,y€kK,
&1lcA and zb"z;/z €A
<=>m+yb_2;/KeA and

T

2
-/ b A\ _ — VA
b zaA+y<jb ZaA)» =xb A+ bb —yg— €A by (@41)

b ¢ _
@m,y,y;,ya e O.

By the prime ideal factorization of the principal ideal generated by a coefficient of ® one
checks that the condition on y is equivalent to

y € (a)Q.

Hence Oy = O+ é—_gtlﬂ(a)ﬂ =0+ b"g/ZQ. OaK = L. Hence Oy4 is an order. O

4.2. Corollary. Oy is a free module over O-if and only if (a,b,c)o is a principal ideal.

4.3. Definition. We call ®(z,y) = azx? + bry + cy? ‘primitive’ if (a,b,c)o = O, and
‘semi-primitive’ if (a, b, c)o is a principal ideal.

4.4. Remark: i) Since A C L is finitely generated over O there exists { € L* such that
[-AC Oy, - Ais anideal of Oy. We call A and B:similar if there exists [ € L such that
l-A=B:

ii) When O, is free one can determine its discriminant D(Oy4) (see (2.3)). Let B =
[a1 + a2d, b1 + bad]o be an ideal of O4 = [1,d]o. Their discriminants fulfil the identity
D(B) = (a1b2 — a2b1)2D(OA:).

iii) If O is a principal ideal domain then every ideal of Oj4 is free over O.

To study the relation between O 4 and O, we first look at a more general situation. Let
R C R’ be commutative rings, f := Ann(R’/R) := {l € R’ : IR’ C R} the conductor of R
in R/. We say

4.5. Definition. i) A R-module A ‘belongs to’ or ‘is proper for’ R if O4 = R.

ii) A R-ideal A C Quot(R) is called ‘1-regular’ if (A,§)r = R, an R'-ideal A C Quot(R’)
‘I-regular’ if (A,f)rr = R’. Here (A, f)r denotes the R—module generated by the elements
of A and f. ' .

iii)-A R-ideal A C Quot(R) is called ‘regular’ if it is similar to a 1-regular ideal, i.e.
there exists | € Quot(R) such that - AC R and (I- A,f)r = R, a R'-ideal A C Quot(R’)
‘regular’ if, if it is similar to a 1-regular ideal, i.e. there exists | € Quot(R’) such that
l-ACR and (- A,f)rr = R..

Here 1-regularity is what is usually called regularity.
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4.6. Proposition. Let O be the ring of integers of an algebraic number field K, L be a
quadratic extension field over K, R’ the integral closure of O in L. Let A C L be a finitely
generated, full O-module, i.e. it contains a K-basis of L. Then

i) A is invertible in its endomorphism ring R := End(4) := {:z: € L|zA C A}, i.e. there
exists a module A belonging to R such that AA =R, namely A = {zeL:zA CR}.

ii)-R is noetherian as O-module, O C R.

iii) The finitely generated proper ideals for R are exactly the ﬂmte]y generated R-regular
ideals.

To proof the proposition we need to prove some lemmata first. The same conditons as
in the proposition are imposed.

Lemma 4.7. A is invertible in R if and only if A®o O, is invertible in R@o O, for each
prime ideal p of O. O, denotes the localization of O at p.

Proof. O, is a flat O-module. Therefore the map A ®» O, — R Qo O, is injective.
Furthermore by the definition of localization A ®0 O, = {2| a € 4, s € O\ p}, the same
for R, and (AB)®0 Op = (A0 O,)(B®0o Oy) for A and B both satisfying the conditions
of Proposition 4.6.

R ®o Oy is equal to the endomorphism ring End(4 ®o O;) of AQ®o Op,. R®p O, C
End(4A ®e O,) is clear. To show End(4A ®o Op) C R®p O, we choose a set of generators
{a1,...,an} of A over O. For z € End(4A ®o Op)

zTa; = % forb; € A, yi € O\p.

The element 2z :=y; X -+- X ypz is in R and hence z = — <z € R®0 0.

If A is invertible with inverse module B; i.e. AB:= R then (AB) @p O, = (A ®0o
Op)(B®o Op) = R ®0 O, for each prime 1deal p € O and therefore A ®p O, is invertible
with invers module B ®o Ob.

Now suppose that A ®o O, is invertible for each prime ideal p € O and denote the
invers module by Bj;. By [Bou, Chap.II, Par. 3, Cor. 4] A =1, 4 ®0 Op. Furthermore
AB= ﬂbEO(A ®0 Op) (Nyeo (B®o Op) = [,co(AB) ®0 Op. Set B:= ), By. We see

AB= ()(4®0 0)B, = [ )i R®0 Oy = R.
peO peO

B:fulfils the required conditions. Hence A is invertible in R with inverse module B: O
Lemma 4.8. AQ®p O, is invertible in R ®o O,.

Proof. Since A is a torsionfree full O-module in L and L is a quadratic extension of K
the module A is projective of rank two over O'and A®o O, is free of rank two over O, (O
is Dedekind!). We denote the involution on L which only fixes K by *. We will construct
the inverse module using this involution.

First we show R* = R. R is contained in Oy since it stabilizes a lattice in L, namely
A viewed as a free Z-module. It contains O by definition. Hence tr(r) =+ r* € O and
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tr(r) — r = r* € R. Therefore R* C R. Furthermore (R*)* = R, hence R C R* and the
assertion follows.

It follows that the endomorphism ring of (A ®o Op)* is R ®o O, since (R ®p Oy)* =
R ®o O, for each p € O. The product (A ®o Op)(A ®o Op)* is invariant under * and
therefore generated by elements in O, (An irreducible divisor of the different of R ®o O,,
i.e. the ideal of R generated by r — r*, r € R, will appear to an even power). Since O, is
a principal ideal domain one has

(A®0 0p)(A®0 Op)" = Na(R®0o Op)

with 0 # N4 € O, and we can take N;I(A ®o Op)* =: A®o O;l as inverse module to
A O

Proof of Proposition: 4.6. i): By commutativity the inverse is unique for if AB:= AB' = R
then B'= BR = BAB' = RB' = B'. By Lemma 4.7and 48 A~} = (.o N1 (A®0 Oy)*.
Now we show A~1 = A. A= C A holds by the definition of A. Since AA C R = A~'A
we see by multiplication with A~! that A C A~L.

ii): A is an O-module. Therefore by definition R is an O-module and O C R. O
is noetherian. R is finitely generated since (stabilizing a lattice, namely A over Z) it is
contained in O which is a noetherian O-module. Hence R itself is noetherian as O-
module. '

iii): If A is R-regular then it is R-proper. For if A C R is not R-proper then R C
End(A) =: R C O. Set f := Ann(R'/R). { is the largest ideal of R’ contained in R,
f # R. Hence A C f’. On the other hand f := Ann(Op/R) is contained in ' since R'f C R,
hence f C f' and (4,f) C f # R, i.e. A is not R-regular.

We show that a proper R-ideal A is regular by proving that it is locally principal, i.e.
A®o Op = ap(R®0 Oy) for some ap € RQo O, for each prime ideal p C O. Obviously a
principal ideal is regular. By the same argument as for [Oh, Prop. 2] one shows that A is
R-regular if and only if A ®o O, is R ®0 Op-regular for all p C O.

Now we show that A is locally principal. Since A ®o O, is invertible we can conclude
by [Ka2, Thm 2] that

A®o Op = apSp

where S, is an order, i.e. a finitely generated Op—module which is a subring of L. containing
1 such that S,K =L, and a, € L invertible. Sy, C R®o O, since Sp(AQ0 Oy) = Spa,Sy =
apSy = A®0p Op. On the other hand (R®0 Op)a,Sy = (R®0 Oy)(A®0 Op) C (AR Oy) =
apSy. Multiplying by a; ! we get (R®00,)S, C S, and since 1 € S, we see (R®0Op) C S,
Hence

Sp = R®o 0.

This shows iii). O

Corollary 4.9. The finitely generated, proper R—-modules form a group under module
multiplication (we denote it by ). The proper ideals of R are finitely generated.

4.10. Remark: i) It also follows from [Ka2, §2] that the relative norm defined by the
involution is multiplicative. '
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ii) The correspondence between 1-regular R-ideals and 1-regular R’-ideals is one to
one and for a 1-regular R-ideal A the index satisfies

(4.2) [R: A =R : AR,

(see for example [Co, Thm. 10.19]). There are only finitely many similarity classes of
finitely generated, proper R—modules (cf. Remark 4.4 and [B-Sh]), by Corollary 4.9 they
form a group which we denote by C(R). Each similarity class can be represented by a
1-regular ideal. The 1-regular ideals have a unique prime ideal factorization in R.

We used in the proof of Proposition 4.6 that each finitely generated, torsionfree module
A over a Dedekind ring O is projective and by this isomorphic to a direct sum of n :=rkp A
ideals of O and

(4.3) AP 0. 0P Z0B.. 00DP1-... P,

O'taken n — 1-times (see J: Milnor [Mi, §1]). Using the property of regularity one can
generalize the proof of (4.3) given in [Mi, Lemma 1.7] to direct sums of proper R—modules:

4.11. Proposition. If A and B are finitely generated proper R—modules then A ® B:=
R® AB.

Proof. One only needs to apply an additional isomorphism, namely the multiplication of
A and B:by the factor A4, Ap resp., such that AgqA, ApB resp., are 1-regular. The
1-1-correspondence mentioned in 4.10 ii) allows one to use the same further arguments.

For the rest of this paragraph O and R are like in Proposition 4.6. An important
consequence of the above structure theory are the following lemma and its corollary:

4.11. Lemma. Let T be the ideal class group of O and ['B] denote the class of the O-ideal
B in Z; R the group of finitely generated R-proper R-modules. The map

pR—T

(A= O®Pa), is a homomorphism if and only if R is free over O.

Proof. For two modules A, B: € R we have to show ¢(AB) = ¢(A4)p(B). According to
Proposition 4.11 A® B = R® AB. Now we apply (4.3) to A,B;AB and R. Assume
R = O® Pg, we get the following diagram of isomorhpisms:

A®B =o O@‘BAEBO@EBB =y O O@O@%A%B
ltr
ROAB Zp OOProOdPap =Zo 0000 ODPrPas

Hence PrPas o PaPp. Such an isomorphism is a multiplication by a constant in K*

[Mi, Thm. 1.6} therefore [BrBan] = [BaPBs]. ©(AB) = [Pas] = [PaPBr] = p(4)p(B)
if and only if ‘Br is a principal ideal, i.e. R is free over O. 0O
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4.13. Corollary. IfR is free over O then regular and also the 1-regular R—-modules which
are free over O form a subgroup $), H; resp., of R .

Proof. The 1-regular R-modules form a subgroup R; of R. 5 is the kernel of ¢, H; the
kernel of the restriction of ¢ to ;. O

In the following we will use two other important facts:

4.14. Lemma. Let R be an order in L, that is free over O, A be a regular R~ideal, free
over O (i.e. A€ ). Then its norm ideal N(A) = AA* is principal.

Proof. Choose an admissible basis (see (2.5)) {a,b} of the pair [A4,1] over O. The norm
form of this pair gives the binary quadratic form ®4 = aa*z? + 2R(ab*)zy + bb*y? of
the discriminant A = 4R(ab*)? — 4aa*bb*. This form leads to the ‘standard pair’ A’ =
[[aa*, w], aa*] which is according to Lemma 2.2 G-equivalent to [4, 1]. Therefore
A’ is also a regular R-module. Since R is assumed to be free by Corollary 4.2 ¢ is semi-
primitive, i.e. the ideal generated by the coeflicients of ® is principal:

(4.5) (aa*,2R(ab*),bb")o =: (Mo

for some 0 # r € O. On the basis of the ‘standard pair’ one checks that A’(A’)* = aa*rR.
But this is the norm ideal. O
4.15. Fact: A free order R of rank 2 over O is uniquely determined by its discriminant.

5. ON ZETA FUNCTIONS OF. PRIMITIVE BINARY QUADRATIC FORMS

Let O'be the ring of integers of an algebraic number field K. Fix A # 0 in O which
is not a square. The binary quadratic forms over O of discriminant A factorize in the
relative quadratic field extension L of K by v/A. For a primitive form the free module of
the corresponding pair is similar (see Remark 4.4 i) to a proper ideal of the unique order R
of discriminant A which is free over O (see (2.4) and Lemma 4.1). The finitely generated,
free, proper modules of R form a subgroup $ of the group of finitely generated, proper
modules & and hence the similarity classes of the free proper modules, denoted by C($),
form a subgroup of the finite class group C(fR) of proper modules of R (see Remark 4.10
and Corollary 4.13). From this and Lemma 4.14 follows that the correspondence between
primitive binary quadratic forms over @ and pairs:

5.1. Lemma. For above A € O fix a square root 6 € L. Then there is a one to one
correspondence between G-equivalence classes of primitive binary quadratic forms over
O' of discriminant A and similarity classes of finitely generated, free (over O), proper R-
modules by choosing an admissible basis of a representing module A C R for the form with

respect to a generator n(A) of the norm ideal N(A) = AA* and taking the norm form ;—(I‘L—)
with respect to that basis.

Proof. For each similarity class of finitely generated, free proper modules choose a repre-
sentative A which is an ideal. One naturally can associate to it the G-equivalence class
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of the pair (see Def. 2.1) [A4,n(A)], where n(A) is a generator of the principal ideal N(A)
(see Remark 4.10 i and Lemma 4.14). It follows from Remark 4.4 ii) and Lemma 4.1
that the discriminant D(A) of A (for the admissible basis) is equal to n(A)A, hence the
pair has discriminant A. The only other pairs of discriminant A for some basis of A
are [A,en(A)], € € O*, but these are G-equivalent to [A,n(A4)]. On the other hand by
primitivity of the form &(z,y) = az? + bzy + cy? and Corollary 4.2 the associated module
[a, b-;/Z]O is proper for R (=1, %]o)- 0O

Lemma 5.1 and Corollary 4.13 motivate the following definitions of zeta functions. We
will show that they are equal. In the definition we do not specify the region of convergence
because it will follow from Lemma 5.4 and Proposition 5.9 that the functions considered
can be meromorphically continued to C. We only remark that if they converge for large s
then they converge absolutely. So we are allowed to change the summation.

5.2. Definition. For the unique free order R of rank 2 over O of discriminant A set

Qals) = S NeA)™

ACR, proper ideal
free over O

Furthermore, let [®] denote the G-equivalence class of the binary quadratic form ® over
O, E(®) the automorphism group of . Set

Pa(s) == Z Z INk/q(®(z,y)| .
[®]  (z,v)E(Ox0)/E(®)
& primitive
A(P)=A
where
(5.1) NRr(4) := Ng,q(N(4)).

5.3. Lemma. Pa(s) = Qa(s).
Proof. We start with Qa(s). Let {H;,..., H,;} denote the similarity classes of . Then

Qals) =) Qaxls),
=1

with Qa,i(s) := 2_4epy, Nr(A)™°. For a proper ideal A C R one has a one-to-one corre-
spondence between principal ideals (§) g, £ € A, and proper ideals B in the similarity class
of A~! by construction of the inverse module (see Proposition 4.6):

(5.2) AB=(f)r<= B=(¢)rA™', BCRifandonlyif(§)pcC (A7) =4

Take for each class H; a representative ideal A;. Then by (5.1), (5.2) and the fact that A~1
is similar to A* (consequence of Lemma 4.14, i.e. A~! = N(4)~1A* with N(A) principal)

it follows: .

Qa:(s) = Z Nk/q (1\11\1((i))> ,

E€A;/Ur
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where Ur denotes the units of R. By the choice of a generator n(A) of N(A4) and an admis-
sible basis with respect to this generator we get a binary quadratic form ®; of discriminant
A. Dividing out the units Ug is by Remark 3.1 equivalent to dividing out the action of
the automorphism group E(®;) with respect to the above basis, hence

Qails) = > INk/q(®:(z, y)| ™"

(z,9)E(O%O)/E(%:)

The absolute value has to be taken since Nx,q((a)) = |Nk/q(a)|- By Lemma 5.1 (1-1
correspondence) it follows
Pa(s) = Qa(s)-
a
For semi-primitive forms ®(z,y) = az? + bzy + cy? of discriminant A, i.e. (a,b,c)o =
(r)o for some 0 7é r € O, the endomorphism ring of the correspondmg free module A

has discriminant 4 5 1<I>(:1: y) is primitive of discriminant 4 5. Summing over all principal
square divisors of A one obtains a corollary of Lemma 5.3 for semi—primitive forms:

5.4. Definition and Corollary.

Sa(s): = > > Nk /q(®(z,9))|™° =
@ (@wE(OxO)/E@)
&. semi—primitive
A(P)=A

= D INx/q(n)|™"Pg (s).

CORTA

Before we move on to the question of convergence we present the following, more general
zeta function for primitive binary quadratic forms over O:

5.5. Definition. Let M € O be an ideal. Define the following zeta function (compare:
Definition 5.2) :

PM,A(S) = Z Z INK/Q(Q(m7 y))l—s
[2)  (sy)E(MxM)/E@)
& primitive
A(P)=A

If A is a proper ideal in R, free over O, then also M A is proper in R but not free except
in the case that M? is principal (cf. (4.3)); it lies in a coset of /& modulo £. With the
same arguments as in Lemma 5.3 one shows:

5.6. Lemma. Let {A;}:;=1,.n be a representative system of C(5)). Then

h.

Pya(s)=>_ Y Ngsq(M) >Ng(B)™*.

=1 Be[MA;]™"
ideal
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5.7. Remark: i) Here in general (M A)~! is not similar to (M A)* because M M* may not
be principal (compare Lemma, 4.14).

ii) If the index of the group of units Up of O in the group of units Ug in R is finite one
can apply [EGM, Proposition 3.4] to obtain a formula in terms of Pa.a(s) for the zeta
function

Pya(s)= Y > INk/Q(®(z, %)),
[®)  (z9)E(MXM)/E(®)
& primitive (zy)=M"
A(R)=A
namely ,
=~ U
Bua(s) = 2B S™ (0, M, ) Pagr (),

ol ez
where [M’] runs through the ideal classes of O.

iii) The problem of units also leads to the fact that one can define zeta functions of
binary quadratic forms with respect to 1-equivalence (see Definition 5.1) only if O has only
finitely many units since the action of the automorphism group of the form corresponds
to multiplication of the module by units of R of relative norm 1. Otherwise the inner sum
does not converge. That means that K has to be either rational or imaginary quadratic.
The G-equivalence class of a form as well as the similarity class of the the corresponding
module splits into finitely many 1-equivalence classes and 1-similarity classes respectively.
Two modules are 1-similar if they are similar and the relative norm of the similarity factor
fulfills a restriction given by 1-equivalence of pairs (Definition 2.1).

iv) If the forms are not primitive one can formulate the zeta function only in terms

of the corresponding modules, but not in terms of the order. For the zeta function of a
module see [Od].

6. ANALYTIC. CONTINUATION

The meromorphic continuation of Pa(s) to the whole complex plane is provided by
expressing @a (s) in terms of L-functions associated to a congruence subgroup for L. We
define a zeta function (gr(s) for the order R in L. Since R is noetherian each proper
ideal A can be uniquely written as a product of primary ideals A = Pj--- P; such that
(P;, Pj)r = R for i # j [v.d. W, Kapitel 15, 17]. If F denotes the set of primary ideals of
the conductor f of R then either (P;, F)p = R for all F € F (and hence 1-regular) or there
is a ' € F and n € N such that P; C P;, F C Pr for the prime ideal Pr associated to F’
(let us call these ‘of Type IT’). In our situation there are only finitely many primary ideals
for a given prime ideal Pr and n € N which satisfies the above inclusions. The product
over the Type II primary ideals in the above factorization is a proper ideal of R. We call it
a proper ideal of Type II. It follows that one can split the zeta function into two factors,
a sum over the 1-regular ideals and a sum over the proper ideals of Type 1I :

Cr(s):= Y Ng(A)™* =(a(s,f)Fr(s, 1),

ACR, proper



124

with

Cr(s,f) == Z Ngr(A)™® and Fr(s,f) := Z Ngp(B)~*°

A 1-regular B: proper of Type II'

where Nr(A) = Nk ,q(N(4)) (cf. (5.1)).
The same way one defines (g (s, f) for characters x of C(R).
Furthermore we can define for R the zeta function

Zp(s) := Z [R: A]™®

ACR, proper

and ZR (s, f)-

There is the 1-1 correspondence between 1-regular ideals in R and Op, respectively
realized going down by intersection with R, going up by multiplication by Or. The cor-
responding absolute norms are equal: [R : A] = [0 : AO}] (recall Remark 4.10 ii). Fur-
thermore AA* N O'= (AOL)(AOL)* N O. By [Co, Cor. 16.4] Nx,q(N(4)) = [OL.: AOL].
Therefore one can identify (g, (s,f), Zrx(s,f) and Co, x(s,f).

Furthermore C(R) ~ R(f)/Pr(f), where R(f) denotes the 1-regular ideals of R and

Pa(f) = (A= § €L|B, 7€ 0L, (Bf) =1, (1§ = 1).

This is isomorphic to Or(f)/P(f). P(f) is the ray modulo f, i.e. the principal ideals that
are multiplicatively congruent to 1 modulo f (for the definition see [Hal, §5, Def. 50]).
Hence yx is a ideal character mod f and (o, (s,f) = L(s,x), the L-series of L for the
ideal character x mod § (cf. [Hal, §7, Def. 69,71]). We denote the order of C(R) by A;.
With this we recover @a(s) (see Definition 5.2) again by applying [EGM, Lemma 3.6] and
we obtain:

6.1. Proposition.

Pa(s) = Qa(s) = ZL(S X)Frx(s,f) Y. x(H),

HeC(H)

the first sum taken over all characters of O (f)/P(f) and the second over the classes of the
O-free, proper modules.

6.2. Remark: One can express Fr,(s,f) as a product over the prime ideals associated
to the primary ideal decomposition of the conductor. It is meromorphic in s.
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