A duality for finite t-modules

都立大理 田口 雄一郎 (Yuichiro Taguchi)

The duality mentioned in the title is the $\mathbb{F}_q[t]$ -analogue of the Cartier duality, replacing the multiplicative group \mathbb{G}_m by the Carlitz module C. Finite t-modules are, roughly, finite locally free group schemes which are $\mathbb{F}_q[t]$ -submodules of abelian t-modules ([1]) with scalar t-action on their tangent spaces. The duality is expected to play a fundamental role in the theory of Drinfeld motives. Throughout the article, \mathcal{O}_S denotes the structure sheaf of a scheme S.

1. Definitions

Let A be any commutative ring. For an A-scheme S, we denote by $\alpha: A \to \Gamma(S, \mathcal{O}_S)$ the structure morphism.

DEFINITION. An A-module scheme over an A-scheme S is a pair (G, Ψ) consisting of a commutative group scheme G over S and a ring homomorphism $\Psi: A \to \operatorname{End}(G/S)$; $a \mapsto \Psi_a$ such that, for each $a \in A$, Ψ_a induces multiplication by $\alpha(a)$ on the \mathcal{O}_S -module $\operatorname{Lie}(G/S)$.

EXAMPLE. A vector bundle G on S can be naturally regarded as a $\Gamma(S, \mathcal{O}_S)$ -module scheme. We shall mean by a vector group scheme such a $\Gamma(S, \mathcal{O}_S)$ -module scheme.

Now we define several "modules" and "sheaves" (Mi and Si for i=1,2,3 below). The morphisms are defined naturally for them (though we omit the definition). Each "modules" and "sheaves", for i=1,2,3, are in anti-equivalence of categories.

First, let $A = \mathbb{F}_q$, and let S be an \mathbb{F}_q -scheme. For an \mathbb{F}_q -module scheme (G, Ψ) over S, set $\mathcal{E}_G := \underline{\mathrm{Hom}}_{\mathbb{F}_q,S}(G,\mathbb{G}_a)$. ($\underline{\mathrm{Hom}}_{\mathbb{F}_q,S}$ denotes the Zariski sheaf on S of \mathbb{F}_q -linear homomorphisms.)

DEFINITION M1. An \mathbb{F}_q -module scheme (G, Ψ) over S is called a finite φ -module if \mathcal{O}_G and \mathcal{E}_G are locally free of finite rank over \mathcal{O}_S with rank $\mathcal{O}_G = q^{\operatorname{rank} \mathcal{E}_G}$, and \mathcal{E}_G generates the \mathcal{O}_S -algebra \mathcal{O}_G .

DEFINITION S1. (Drinfeld [2], §2) A φ -sheaf is a pair (\mathcal{E}, φ) consisting of a locally free \mathcal{O}_S -module \mathcal{E} on S of finite rank and an \mathcal{O}_S -module homomorphism $\varphi: \mathcal{E}^{(q)} \to \mathcal{E}$. (Here $\mathcal{E}^{(q)}$ denotes the base extension of \mathcal{E} by the q-th power map $\mathcal{O}_S \to \mathcal{O}_S$.)

In the rest, A is the polynomial ring $\mathbb{F}_q[t]$ in one variable t over \mathbb{F}_q , and S is an A-scheme. Set $\theta := \alpha(t)$, the image of t in \mathcal{O}_S .

DEFINITION M2. A finite t-module (G, Ψ) over S is an A-module scheme over S such that

- (1) G is killed by some $a \in A \mathbb{F}_q$; and
- (2) $(G, \Psi \mid_{\mathbb{F}_q})$ is a finite φ -module over S.

DEFINITION S2. A t-sheaf $(\mathcal{E}, \varphi, \psi_t)$ on S is the pair of a φ -sheaf (\mathcal{E}, φ) and an endomorphism ψ_t of (\mathcal{E}, φ) which induces multiplication by θ on $\operatorname{Coker}(\varphi)$. (Recall that $\operatorname{Coker}(\varphi)$ is canonically isomorphic to $\operatorname{Lie}^*\operatorname{Gr}(\mathcal{E}, \varphi)$ ([2], Proposition 2.1, 2)).)

We note here that a finite φ -module G can be canonically embedded into a vector group scheme $E_G := \operatorname{Spec}(\operatorname{Sym}_{\mathcal{O}_S} \mathcal{E}_G)$.

DEFINITION M3. A finite v-module (G, Ψ, V) over S is a finite t-module scheme (G, Ψ) over S together with a morphism $V: E_G^{(q)} \to E_G$ of \mathbb{F}_q -module schemes such that $\Psi_t = (\theta + V \circ F_{E_G}) \mid_G$. (Here θ means multiplication by $\theta = \alpha(t) \in \Gamma(S, \mathcal{O}_S)$ on E_G , and F_{E_G} is the Frobenius morphism of E_G .)

DEFINITION S3. A v-sheaf $(\mathcal{E}, \varphi, v)$ on S is the pair of a φ -sheaf (\mathcal{E}, φ) on S and an \mathcal{O}_S -module homomorphism $v: \mathcal{E} \to \mathcal{E}^{(q)}$ such that $(\mathcal{E}, \varphi, \psi_t)$ with $\psi_t := \theta + \varphi \circ v$ is a t-sheaf on S. (Here θ means multiplication by θ on \mathcal{E} .)

EXAMPLE. Let (E, Ψ) be a Drinfeld A-module of rank r over $S = \operatorname{Spec} R$, where R is an A-algebra. Assume the action of t is given by

$$\psi_t(X) = \theta X + a_1 X^q + \cdots + a_r X^{q^r}, \quad a_i \in R, \ a_r \in R^{\times},$$

with respect to a trivialization $E \simeq \mathbb{G}_a = \operatorname{Spec} R[X]$. Then for $a \in A - 0$, the finite t-module $G = \operatorname{Ker}(\Psi_a)$ is furnished with a v-module structure by

$$v: \mathcal{E}_G o \mathcal{E}_G^{(q)}, \ X^{q^i} \mapsto X^{q^{i-1}} \otimes (\theta^{q^i} - \theta) + X^{q^i} \otimes a_1^{q^i} + \dots + X^{q^{r+i-1}} \otimes a_r^{q^i}.$$

(Here $X^{q^{i-1}} \otimes (\theta^{q^i} - \theta) := 0$ if i = 0.) But this v-module structure is not unique unless the Frobenius morphism is injective on $\mathcal{E}_G^{(q)}$.

In fact, finite v-modules over "mixed characteristic" bases are not so far from finite t-modules, since we have:

PROPOSITION. Let (G, Ψ) be a finite t-module which is étale over the generic points of S. Then (G, Ψ) has a unique v-module structure V_G extending the given t-module structure; $\Psi_t = (\theta + V_G \circ F_{E_G}) \mid_G$. If G and G' are two such finite t-modules, then a morphism $G \to G'$ of finite t-modules preserves this v-module structure. In particular, if $\alpha: A \to \mathcal{O}_S$ is injective, then the two concepts, a finite t-module and a finite v-module, are equivalent.

The same is valid for a t-sheaf $(\mathcal{E}, \varphi, \psi_t)$ such that $\varphi : \mathcal{E}^{(q)} \to \mathcal{E}$ is injective.

2. The duality

For an \mathcal{O}_S -module \mathcal{E} , put $\mathcal{E}^* := \underline{\mathrm{Hom}}_{\mathcal{O}_S}(\mathcal{E}, \mathcal{O}_S)$. If $(\mathcal{E}, \varphi, v)$ is a v-sheaf on S, then φ and v induce respectively the \mathcal{O}_S -module homomorphisms

$$\varphi^*: \mathcal{E}^* \to \mathcal{E}^{*(q)}$$
 and $v^*: \mathcal{E}^{*(q)} \to \mathcal{E}^*$.

It is easy to check that $(\mathcal{E}^*, v^*, \varphi^*)$ is a v-sheaf on S.

DEFINITION. We define the dual $(\mathcal{E}, \varphi, v)^*$ of a v-sheaf $(\mathcal{E}, \varphi, v)$ to be the v-sheaf $(\mathcal{E}^*, v^*, \varphi^*)$. If a finite v-module G corresponds to a v-sheaf $(\mathcal{E}, \varphi, v)$, then we define its dual G^* to be the finite v-module which corresponds to the v-sheaf $(\mathcal{E}^*, v^*, \varphi^*)$.

We have clearly the following

PROPOSITION. Let G be a finite v-module.

- (i) G* has the same rank as G.
- (ii) The correspondence $G \mapsto G^*$ is functorial. This functor is exact.
- (iii) G^{**} is canonically isomorphic to G.
- (iv) $(G \times_S T)^* \simeq G^* \times_S T$ for any S-scheme T.

The same is true for the duality of v-sheaves.

Our main result is the following

THEOREM. Let C be the Carlitz module over Spec A, and let G be a finite vmodule over S.

(i) The functor

$$\frac{\mathit{Hom}_{v,S}: (S\text{-}\mathit{schemes}) \to (A\text{-}\mathit{modules})}{T \mapsto \mathit{Hom}_{v,T}(G \times_S T, \ C \times_{\operatorname{Spec} \ A} T)}$$

is represented by (the underlying finite t-module of) G^* .

(ii) There exists an A-bilinear pairing of A-module schemes:

$$\Pi: G \times_S G^* \to C$$

such that:

(ii-1) If G' is a finite t-module over S sitting in an A-bilinear pairing Π' : $G \times_S G' \to C$, then there exists a unique morphism $M: G' \to G^*$ of finite t-modules which makes the diagram

$$G \times_S G' \xrightarrow{\Pi'} C$$

$$1 \times M \downarrow \qquad \qquad \parallel$$

$$G \times_S G^* \xrightarrow{\Pi} C$$

commute.

(ii-2) If $\alpha:A\to\mathcal{O}_S$ is injective and S is integral with function field K, then Π induces a non-degenerate A-bilinear pairing between the A-modules of geometric points:

$$G(K^{\text{sep}}) \times G^*(K^{\text{sep}}) \to C(K^{\text{sep}}).$$

If we consider only the t-module structure, we will have the following:

(i) The functor

$$\underline{\operatorname{Hom}}_{t,S}(G,C):(S ext{-schemes}) o (A ext{-modules}) \ T\mapsto \operatorname{Hom}_{t,T}(G imes_S\,T,\ C imes_{\operatorname{Spec} A}T)$$

is represented by an A-module scheme \widetilde{G}^* over S.

(ii) If G is étale over the generic points of S, then \widetilde{G}^* is of the form $G^* \cup \widetilde{G}_0^*$, where G^* is (the underlying finite t-module of) the dual finite v-module of G with the unique v-module structure, and \widetilde{G}_0^* is supported on the locus in S where G is not étale. In general, \widetilde{G}_0^* has a positive dimension.

Finally, we mention the Frobenius-Verschiebung relation over a "finite characteristic" base.

PROPOSITION. Let (G, Ψ, V) be a finite v-module over S.

- (i) Let d be a positive integer, and $F_G^d: G \to G^{(q^d)}$ the q^d -th power Frobenius morphism. Then $G^{(q^d)}$ (resp. F_G^d) is a finite v-module (resp. a morphism of finite v-modules) if and only if $Im(\alpha) \subset \mathbb{F}_{q^d}$.
- (ii) Assume $Ker(\alpha: A \to \mathcal{O}_S) = (\mathfrak{p})$ with $\mathfrak{p} \in A$ being a monic prime element of degree d. Let $V_{G,\mathfrak{p}}: G^{(q^d)} \to G$ be the dual morphism of $F_{G^*,\mathfrak{p}}:=F_{G^*}^d: G^* \to G^{*(q^d)}$. Then we have

$$\Psi_{\mathfrak{p}} = V_{G,\mathfrak{p}} \circ F_{G,\mathfrak{p}} \quad \textit{ and } \quad \Psi_{\mathfrak{p}}^{(q^d)} = F_{G,\mathfrak{p}} \circ V_{G,\mathfrak{p}}.$$

In particular, we have an exact sequence of finite t-modules

$$0 o \mathit{Ker}(F_{G,\mathfrak{p}}) o \mathit{Ker}(\Psi_{\mathfrak{p}}) o \mathit{Ker}(V_{G,\mathfrak{p}}) o 0.$$

3. Comments

- (1) Our theory is almost the "Dieudonné theory" for finite t-modules. It might be possible to develope the theory of universal extensions of abelian t-modules from our point of view.
- (2) The relation between our duality and the dual isogeny of abelian t-modules remains to be worked out.
- (3) I have not considered the case of general A, the ring of elements of a function field over a finite field which are regular outside a fixed place.

- (4) Does there exist such a duality for "finite π -modules", with target in arbitrary Lubin-Tate group? To what extent are the coefficients $\mathbb{Q}_p(r)$ celestial (or godgiven)? That is, in which cases can one replace the coefficients $\mathbb{Q}_p(r)$ by other local fields with other "Lubin-Tate twists"?
- (5) Our duality will be used to prove the "Carlitz-Hodge-Tate decomposition", which will be reported elsewhere.

References

- [1] G. W. Anderson, t-motives, Duke math. J. 53 (1986), 457-502
- [2] V. G. Drinfeld, Moduli variety of F-sheaves, Funktsional'nyi Analiz i Ego Prilozheniya 21 (1987), 23–41

Tokyo Metropolitan University, Hachioji, Tokyo, 192-03 JAPAN taguchi@math.metro-u.ac.jp