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IntroAduct ion

The aim of this paper is to study systematically the Iwasawa theory

of Kummer p-extensions of Q, i.e., we shall study the structure of

X = Gal(Loo/Q(Ge,a" ™))

as a Z,[[Gal(Q((, a'?7)/Q(¢y))]-module, where a is a rational num-
ber prime to p, L. is the maximal unramified abelian p-extension of
Q(G, at/?™), and p' = p (if p > 2) = 4 (if p = 2). Let ¢ be a topological
generator of Gal(Q((yw, a*/?*)/Q(()). Then the non-commutative ring

Ay = Zp[[Ga*l(Q(CP“Uallpw)/Q(Cp’))]]

becomes to the Iwasawa algebra A = Z,[[Gal(Q((y)/Q((r))]] under
g — 1, and X/(qg — 1)X is related to Xo = Gal(Lo/Q(()), where Ly
is the maximal unramified abelian p-extension of Q((,). Therefore, our
aim can be stated as to quantize the Iwasawa theory of cyclotomic fields.
Our results follow from the Iwasawa theory and the commutation relation

between ¢ — 1 and elements of A,.



First we treat general cases. We show that X is a finitely generated
A,module, and that for each n € N, X/(¢ — 1)*X is a finitely gener-
ated and A-torsion A-module of u-invariant 0 whose A-invariant satisfies
asymptotically an + 3 for certain integers & > 0 and § > 0. This deduces
that the cyclotomic Z,-extension of Q(a'/?") is of y-invariant 0, which
was already known by results of Ferrero-Washington [1] and Iwasawa, [2].

Next we treat special cases where Vandiver’s Conjecture holds for

p# 2 and X/(¢g — 1)X = Xo. Then it can be shown that there exist

F e A, = Z,[[Gal(Q(¢=, a'?)/Q)]]

and z € X such that

F|q=1,7=(1+p)‘ = Z &+ Z EiLP(S’wl-i),

+=0,1,2,4,...,p-3 1=3,5,...,p—2

and that A} 3 a — az € X induces a surjective A)-homomorphism
AL J(AL-F) — X, where v € Gal(Q(()/Q) is defined by v({pn) = Gn'*?
(n € N), w denotes the Teichmiiller character, ¢, denotes the idempotent
for ', and L,(s,w'™) denotes the p-adic L-function for w'~*. From this,
we deduce the following inequality for the A-invariant of the cyclotomic

Z,-extension of Q((,,a'/?") :
rankz (X,) < p"-rankz (Xo),

where L, /Q((pee, a'/?") is the maximal unramified abelian p-extension
with Galois group X,,. As an analogy of the Iwasawa theory of cyclotomic
fields, it seems to be interesting if there are some relations between F' and

the g-analogue of L,(s,w!™) constructed by Koblitz [3].
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1 Quantized Iwasawa algebra

1.1. Let p be a fixed prime number, and put p’ = p (if p > 2) and
p' =4 (if p = 2). Let ¥ be the pro-p group generated By v and ¢ with the
single relation

vqg = ¢

.

Let © be the closed subgroup of ¥ generated by ¢, and put ' = £/0.
Then © and I' are isomorphic to Z, with generators ¢ and y© respectively.
Let A, denote the completed group ring Z,[[X]]. Then by a result of Serre
[4], under the correspondence v < 1+ T and ¢ & 1+ S, A, is isomorphic
to, and hence is identified with, the quotient ring of Z,[[T, S]], (: the

non-commutative power series ring over Z, with variables T and S) by

the single relation
(1.1.1) Q+T)A+S) = A+ (1 +7),

which is equivalent to

p'+1 pl +1 )
(1.1.2) TS = ST+pS(1+T)+ ). ( . )S‘(l + 7).

1=2 t
The algebra A, is a complete local ring with maximal ideal (p, T, S). Let
A denote the Iwasawa algebra Z,[[I']] = Z,[[T]]. Then by putting ¢ = 1,
A, becomes to A, so we call A, the quantized Iwasawa algebra. By (1.1.2),
any o € A, can be uniquely expressed as

a = Z S"a, (an € A).
n=0

In what follows, A, (resp. A)-modules mean topological additive groups

on which A, (resp. A) acts continuously. Since A, contains A naturally,

any A,-module can be regarded as a A-module.



1.2. Lemma. If M is a compact left A-module such that vy, ..., v, €
M generate M[(p,T,S)M over F,, then they generate M over A,. In
particular,

M/(p,T,S)M = {0} < M = {0}.

Proof. One can prove this in the same way as for Lemma 13.16 of [4].

1.3. Lemma. For any o € A,, there exists a unique o € Ay such

that aS = Sd'.
Proof. 1t follows from (1.1.2).

1.4. Corollary. For any left Ag-module M and n € N, S*M is a
left sub Ay-module of M.

1.5. Lemma. For any o € A,, there exists a unique o/ € A, such

that Sax = o'S. Then

min{n | p f aon} = min{n |p f ap,},
where ag = 02 aonT™ (don € Zp) and ag = 2020 5, T (0, € Zy).

Proof. By (1.1.2),
(1+p’+plfj1 ( p'jl )s*’-l)ST = (T—p'—pfj1 ( p'jl ) S+1s.
=2 i=2
Therefore, if « = T, then
o = (1 +p'+p§:1 ( pljl ) S"“l)'l(T—Jfﬁ'—pi1 ( p’jl ) s,
i=2 =2
and hence

ag = (1+p)(T—p) = T mod(pA).
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1.6. Lemma. For each integer n > 0, put 0, = (1+ S)?" — 1. Then

for any a € Ay, there exists a unique &' € Ay such that ao, = 0,0,

Proof. 1t follows from

'

To, = Un{(”g (o, + D)HA+T) -1}

1.7. Corollary. For any left A,-module M and n >0, 0,M s a left
sub Ag-module of M.

2 General Case

2.1. Let {Gn }neN be a set of primitive p™-th roots (;» of 1 such that
Grn+1” = G (n € N), and put
Q(Cp”) = U Q(Cp")-
neN
Let [; # p be prime numbers, m; positive integers (¢ = 1,..., k) prime to
p, and put a = [T5%, ;™. Let {a'/?"},.en be a set of p™-th roots a*/*" of
a such that (a'/?""')? = ¢!/?" (n € N), and put
Q(Cp”’al/px) = U Q(Gpee, allpn)'
neN

Let v and g be elements of Gal(Q({p, a/?*)/Q((y)) defined by
Y(Gr) = 6?7, A(a'/?") = a'P" (n€N)
and
9(Gr) = Gpm, Q(al/pn) = (pn- a!l?" (n € N)

respectively. Then Gal(Q((y, a/?”)/Q((,)) is isomorphic to, and hence
is identified with, the group ¥ defined in 1.1, and via this identification,

© = Gal(Q(¢,a'*")/Q(Gy)) and T = Gal(Q((=)/Q(G)- Let L



be the maximal unramified abelian p-extension of Q((ye, a*/?™), and pﬁt
X = Gal(Lo/Q(Goe,all?™)). Let 0 € T = Gal(Q((pee, a/?7)/Q(¢G))
act on X as

o-z = dz67" (z € X),

where & € Gal(L.,/Q(¢y)) is a lifting of 0. Then this action is well-
defined, and hence we can regard X as a left A (= Z,[[£]])-module.

2.2. Lemma. Let! # p be a rational prime. Then the set of primes
of Q((p) lying above l is a finite set whose cardinality is equal to the
index of (1) in Z), where (l) denotes the closed subgroup of Z; generated
by l.

2.3. Let {/;} be as above. Then by Lemma 2.2, there exist finitely
many primes of Q(({,e) lying above [y, ..., [, which we denote by Ay, ..., A,.
For each j = 1,..,m, let X; be a prime of L., lying above ), and
I; C Gal(Loo/Q(pe)) the inertia group of X;/),. Since Lo /Q(Gpoe, al/P™)
is unramified and Q((ye, a'/?”)/Q({y) is totally ramified at ), the in-
clusion I; — Gal(L/Q({y=)) induces a bijection

I; = Gal(Lo/Q(G=))/ X = O,

and hence
Gal(Loo/Q(Ge)) = XI; (=1,...,m).
Let o; € I; maps to q. Then o; is a topological generator of I; and there

exists a unique z; € X such that o; = z;0;.

2.4. Proposition. Let L, be the mazimal unramified abelian p-

estension of Q(Gw,all?"), and put

X'=SX+Y. 2,3, Xo=X/(0./S)X".

=2
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Then
Gal(L,/Q(G,a' ™)) = X,,.

Proof. One can prove this in the same way as for Lemma 13.15 of [5].

2.5. Proposition. X/SX is a finitely generated and A-torsion
A-module with p = 0.

Proof. In Proposition 2.4, let n = 0. Then by the Iwasawa theory
of Z,-extensions and a result of [1], Gal(Lo/Q({p=))=X/X' is a finitely
generated and A-torsion A-module with x# = 0. On the other hand,

X'/SX = N/(NNSX) (N :=> Z,z,)
=2
is isomorphic modulo a finite group to a free Z,-module of finte rank,
and hence this p-invariant is equal to 0. Therefore, X/SX is a finitely

generated and A-torsion A-module with p = 0.
2.6. Theorem. X 1s a finitely generated left Ag-module.
Proof. 1t follows from Lemma 1.2 and Proposition 2.5.

2.7. Lemma. Let M be a left Aj-module such that there exists a

A-homomorphism with finite cokernel

o D(M(g) — M/SM

i=1
for some g; € A (i = 1,...,n). Then there exists a A-homomorphism with

finite cokernel

¥ DA/ — SM/S*M

=1

where h; € A (1 = ,n) such that Sg; = h;S mod(S?A,).



Proof. By the assumption, there exist o; € M such that g;o, € SM
and that I, Aoy + SM is finite index in M. Hence there exist e; € M
( =1,...,m) such that

M = U(ZAQ,‘-i—SM)-}-eJ'.

1=1 =1

By Propositions 1.3 and 1.5, SAa; C ASa; + S?M. Hence we have

n

(Z ASo; + SZM) + Se;

1=1 =1

-

SM =

and

h,‘SOl,' = Sg,ai =0 mod(SzM).
This completes the proof.

2.8. Lemma. Let N be a finitely generated A-module. Then N 1s a
A-torsion A-module with = 0 if and only if N/pN 1is a finite group.

Proof. Tt follows from the structure theorem of finitely generated A-

modules ([5], Theorem 13.12).

2.9. Theorem. For each n € N, X/S"X, X/0,X and X, are
finitely generated and A-torsion A-modules with p = 0. Moreover, there
erist integers a > 0 and § > 0 independent of n, and an integer ng such

that for all n > ny,
rankz (X/S"X) = an+ .

Proof. By Corollary 1.4 and Lemma 2.7, X/S™ X is a finitely generated
and A-torsion A-module with Z,-rank satisfying the above asymptotic
behavior. Hence by Lemma 2.8 and that 0, X +pX = SP" X +pX, X/, X
and X, are finitely generated and A-torsion A-modules with x4 = 0.
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3 Special Case

3.1. Let p be an odd prime not dividing the class number of Q({, +
- 1), and let [ be a prime congruent modulo p? to a topological generator
of Z (there exist infinitely many such primes by Dirichlet’s theorem
on arithmetic progressions). Then by Lemma 2.2, there exists only one .
prime of Q((y~) lying above . Put a = [ and let the notation be as
in §2. Then X, = X/0,X. Let A, (resp. A’) be the completed group
algebra Z,[[X']] (resp. Z,[[I"]]) of &' = Gal(Q(Ge, a'/?”)/Q) (resp. T' =
Gal(Q(¢)/Q)). Then I' = ¥'/0O, and hence A;, becomes to A by putting

q = 1. Regard I'" as a subgroup of ¥’ by
v(@'?") = a/?" (y € T',n € N).

Then A[ contains A’ naturally. Put A = Gal(Q(()/Q), and regard A
as a subgroup of I by the Teichmiiller character w : F¥ — Z* and the

identifications A = F), I = ZX. For each 1 =0,1,...,p — 2, put

1

= mmw-tw).& € Z,[A],

&

~ For each i = 3,5,...,p — 2, let Ly(s,w'™*) denote the p-adic L-function

with character w'~*, and f; the element of A such that
fi|T=(1+p)’—1 = Lp(sywl_i)-
Let 0 € ¥’ act on X as
c-z = 6267 (c € ¥,z € X),

where ¢ € Gal(L/Q) is a lifting of 0. Then this action is an extension

of the above action of ¥ on X.
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3.2. Proposition. There exist F' € A} and © € X such that
Fls=o = > g+ Y, eafs
+=0,1,2,4,...,p—3 1=3,5,...,p—2

and that A} > o+ oz € X induces a surjective Aj-homomorphism
!
A /(A F) — X.

Proof. Put

Then it is known (cf. [5], Theorem 10.14 and 10.16) that there exists
z € X such that A’ 5 a — az mod(SX) € X, induces an A’-isomorphism
A'/(f)=Xo. Hence z generates X over A, (cf. Lemma 1.2) and there

exist F' € A satisfying the above conditions.
3.3. Theorem. rankz (X,) < p*-rankgz (Xo).

Proof. Let z € X and F' € Aj be as in Proposition 3.2. Then Ske;x
(¢=0,..,p—2,k=0,..,p" — 1) generate X, over A. Since S'¢;Fz = 0,
g;S € SAJ, and SP" € o,A, + pA,, for each j = 0,...,p—2 and [ =
0,...,p" — 1, there exist a;;; € A such that

agm = 0(k <),
o _ b (:1=0,1,2,4,...,p—3)
MO T bufi (6=3,5,.,p—2),
Saiixk = agktie+1S mod(S?A,),
and
p—2p"—1
Z Z aijkISkEiiE € 0, X +pX.
1=0 k=0

-~ Let d; (z = 3,5,...,p — 2) be the minimal degree of non-zero terms of

fi mod(p). Then by Lemma 1.5, the minimal degree of non-zero terms of
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a;ixx Mmod(p) is also d;, and hence

rankzp(Xn) < mnkpp(Xn ®z, Fy)

= p" Y d

1=3,5,...,p—2
= p" - rankgz (Xo).
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